三角形逆时针旋转九十度重叠的面积
- 格式:doc
- 大小:30.00 KB
- 文档页数:1
;4知识点易错点汇总★知识点归纳一、轴对称1、定义:把一个图形沿着某一条直线对折,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
折叠后重合的点是对应点,叫做对称点。
2、性质:对称点到对称轴的距离相等。
3、轴对称图形:指具有特殊形状的一个图形,它可以有一条或多条对称轴。
二、旋转1、定义:把一个图形绕某一点(或轴)转动一定的角度的图形变换叫做旋转。
2、旋转三要素:旋转点(旋转中心)、旋转方向、旋转角度钟表中指针运动的方向为顺时针方向,与钟表中指针的运动方向相反的方向为逆时针方向。
3、性质:图形绕着某一点旋转一定的度数,图形的对应点、对应线段都旋转了相应的度数,对应点到旋转点的距离相等,对应的线段和对应的角度相等。
图形旋转后,形状、大小都没有发生变化,只有位置变了。
4、旋转90°的方法(1)找出原图行的关键点或关键线段;(2)借助三角板或量角器作原图行关键点或线段与旋转中心所在线段的垂线(3)在所垂线上量出或数出与原线段相等的长度(即找到原图关键点的对应点);(4)顺次连接所找到的对应点,即可得到原图形旋转90°后的图形。
5、时钟上包含12大格,60小格,时钟上相邻两数字间即为一大格,一大格为30°;每一大格又平均分为了五个小格,一小格为6°三、平移1、定义:指在一个平面内,将一个图形上的所有点都按照某个方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
2、性质:平移不改变图形的形状和大小。
3、图形平移的步骤:(1)确定原图形位置、平移的方向、平移的距离。
(2)找出原图形的各关键点。
(3)根据题目要求将各个点依次平移,找出各个点的对应点。
(4)顺次连接平移后的各点。
◆习题:1、图形的变换包括:、、。
其中只是改变原图形位置的变换是、。
2、如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这样的图形就叫()图形,那条直线就是()。
小升初真题汇编操作题(二)2022-2023学年六年级下册数学必考易错题苏教版(江苏专用)1.(2021•邗江区)下面每个小方格表示边长1厘米的正方形,请根据要求作图并在横线上填上合适的答案。
(1)如果将图中的原长方形先向平移格,再向平移格,那么平移后长方形的顶点A就位于(8,1)处。
(不画图)(2)将图中的三角形绕B点逆时针旋转90°,画出旋转后的图形。
(3)如果将三角形按2:1的比放大,放大后三角形的面积是平方厘米。
(4)图中C点在B点的偏方向。
2.(2021•盐都区)李红在方格纸上探索平行四边形面积的计算方法。
在平行四边形中画了一条高,将平行四边形分成一个三角形和一个梯形(如图)。
(1)用数对表示垂足A的位置(,)。
(2)将三角形向右平移5格,画出平移后的三角形。
(3)在方格图中画一个梯形,使它与平行四边形的面积相等。
3.(2021•淮安)填空并作图。
(1)把图中的长方形绕B点按逆时针方向旋转90°,画出旋转后的图形。
旋转后D点的位置,用数对表示是。
(2)在三角形的右边,按1:2的比画出三角形缩小后的图形。
(3)把圆O向先右平移4格,再向下平移3格,画出平移后的图形。
4.(2021•仪征市)(1)把图中圆的圆心平移到(10,7)的位置,画出按2:1放大后的圆。
(2)把长方形绕A点逆时针旋转90°,画出旋转后的图形。
(3)画出最右边图形的另一半,使它成为一个轴对称图形。
5.(2021•灌南县)顾英收集了本班20名女生50米跑的测试成绩并制成了条形统计图,请你根据的信息在答题卡上完成一幅扇形统计图。
6.(2022•伊川县)小明家在学校的北偏东45°方向1500米处。
(1)在如图中表示出小明家的位置。
(2)学校北面1千米处是“公园路”,与学院路垂直,在图中画出公园路的位置。
7.(2022•宝应县)下面是小丽以自己家为观测点,画出的一张平面图。
(1)商店在小丽家偏(,)°方向米处。
2021-2022学年五年级数学下册典型例题系列之第五单元作旋转后的图形专项练习(原卷版)1.先把下图中的三角形绕点A逆时针旋转90°,再向右平移5格。
2.画出图中三角形绕点“O”顺时针旋转90 后的图形。
3.画出向上平移3格后再向右平移2格的新图形(标上①),画出绕点O顺时针旋转90°后的新图形(标上②)。
4.按要求作图。
(1)画出三角形ABC点绕C点顺时针旋转90°后的图形,标记为图1;(2)画出三角形ABC向右平移7格后的图形,标记为图2;(3)以NM为对称轴,画出三角形ABC的轴对称图形,标记为图3。
5.在方格中分别画出图形A绕点O顺时针旋转90后的图形和图形B绕点P逆时针旋转90°后的图形。
6.画出三角形AOB绕点O顺时针旋转90°后的图形。
7.将方格纸中的图形A向下平移4格得到图形B,将图形C绕着O点顺时针方向旋转90°得到图形D。
8.实践操作。
(1)画出三角形向右平移5格后的图形。
(2)画出原三角形绕点O逆时针旋转90°后的图形。
9.分别画出下边三角形绕点B顺时针旋转90°和逆时针旋转90°后的图形。
10.画出下图绕点A逆时针旋转90度后的图形。
11.(1)请将图中三角形绕点O按顺时针方向旋转90°得到图形A;(2)然后将得到的图形A绕点O按逆时针方向再旋转180°得到图形B。
12.按要求画图。
①将图形①向下平移3格,再向左平移3格。
②将图形②绕点O沿顺时针方向旋转90°。
13.(1)画出图A的另一半,使它成为一个轴对称图形。
(2)把图B向右平移5格。
(3)把图C绕O点顺时针旋转90°。
14.按要求画一画。
(1)画出图形A的另一半,使它成为轴对称图形。
(2)将图形B向上平移4格。
(3)将图形C绕O点逆时针旋转90︒。
15.画出三角形绕点“O”顺时针旋转90°得到的图形,然后再画出向左平移14格后得到的图形。
第15讲:圆与扇形内容概述掌握圆与扇形的基本概念和性质,以及它们的周长和面积计算公式,并能熟练运用公式处理相关的几何问题;学习如何利用割补法和包含排除的思想计算图形中特定部分的面积;学会分析几何图形的运动过程,并由此得出点的轨迹和图形扫过的区域。
典型问题兴趣篇1.已知一个扇形的圆心角为120︒,半径为2,这个扇形的面积和周长各是多少?(π取3.14)2.已知一个扇形面积为18.84平方厘米,圆心角为60︒,这个扇形的半径和周长是多少?(π取3.14)3.(1)根据图15-1所给的数值,求这个图形的外周长和面积。
(π取3.14)(2)如图15-2,有8个半径为1厘米的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。
如果圆周率π取3.14,那么花瓣图形的周长和面积分别是多少?4.如图15-3,求各图形中阴部分的面积。
(图中长度单位为厘米,π取3.14)5.如图15-4,求各图中阴部部分的面积。
(图中长度单位为厘米,π取3.14)6.图15-5中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米。
其中直角三角形竖起的直角边的长度是多少?(π取3.14)7.求图15-6中阴影部分的面积。
(π取3.14)8.如图15-7,在33⨯的方格表中,分别以、A E 为圆心,3、2为半径,画出圆心角都是90︒的两段圆弧。
图中阴影部分的面积是多少?(π取3.14)9.如图15-8,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板。
问:余下的边角料的总面积是多少平方厘米?10.一条直线上放着一个长和宽分别为4厘米和3厘米的长方形Ⅰ(图15-9)。
让这个长方形绕顶点B 顺时针旋转90︒后到达长方形Ⅱ的位置,这样连续做三次,A 点到达E 点的位置。
求A 点经过的总路程的长度。
(圆周率按3计算)拓展篇1.(1)已知一个扇形的半径为2厘米,弧长为3.14,这个扇形的面积是多少? (2)已知一个半圆形的面积是56.52平方厘米,求这个半圆形的周长。
阴影部分面积专题例1.求阴影部分的面积。
(单位:厘米)解:这是最基本的方法:圆面积减去等腰直角三角形的面积,×-2×1=1.14(平方厘米)例2.正方形面积是7平方厘米,求阴影部分的面积。
(单位:厘米)解:这也是一种最基本的方法用正方形的面积减去圆的面积。
设圆的半径为r,因为正方形的面积为7平方厘米,所以=7,所以阴影部分的面积为:7-=7-×7=1.505平方厘米例3.求图中阴影部分的面积。
(单位:厘米)解:最基本的方法之一。
用四个圆组成一个圆,用正方形的面积减去圆的面积,所以阴影部分的面积:2×2-π=0.86平方厘米。
例4.求阴影部分的面积。
(单位:厘米)解:同上,正方形面积减去圆面积,16-π()=16-4π=3.44平方厘米例5.求阴影部分的面积。
(单位:厘米)解:这是一个用最常用的方法解最常见的题,为方便起见,我们把阴影部分的每一个小部分称为“叶形”,是用两个圆减去一个正方形,π()×2-16=8π-16=9.12平方厘米另外:此题还可以看成是1题中阴影部分的8倍。
例6.如图:已知小圆半径为2厘米,大圆半径是小圆的3倍,问:空白部分甲比乙的面积多多少厘米?解:两个空白部分面积之差就是两圆面积之差(全加上阴影部分)π-π()=100.48平方厘米(注:这和两个圆是否相交、交的情况如何无关)例7.求阴影部分的面积。
(单位:厘米) 解:正方形面积可用(对角线长×对角线长÷2,求)正方形面积为:5×5÷2=12.5所以阴影面积为:π÷4-12.5=7.125平方厘米(注:以上几个题都可以直接用图形的差来求,无需割、补、增、减变形) 例8.求阴影部分的面积。
(单位:厘米)解:右面正方形上部阴影部分的面积,等于左面正方形下部空白部分面积,割补以后为圆,所以阴影部分面积为:π()=3.14平方厘米例9.求阴影部分的面积。
(压轴题)小学数学五年级下册第五单元图形的运动(三)测试卷(答案解析)(4)一、选择题1.从6:00到6:30,分针旋转了()A. 30°B. 90°C. 180°2.从10:00到12:00,时针旋转了()°,从1:30到1:50,分针旋转了()°。
A. 60,60B. 60,90C. 60,1203.下面的图案是由一个基本图形经过平移得到的是( )。
A. B. C. D.4.看一看,下面的图②是由图①()变化得到的图案。
A. 旋转B. 平移5.下面的图案,()是由涂有阴影的部分旋转形成的。
A. B. C.6.任意一对对应点与旋转中心所成的角都是()A. 对应角B. 旋转角C. 直角D. 钝角7.利用平移,旋转,()可以设计出美丽的图案A. 翻转B. 对称C. 移动8.如图,将三角形A绕点O()可以得到三角形B。
A. 按顺时针方向旋转60°B. 按顺时针方向旋转90°C. 按逆时针方向旋转60°D. 按逆时针方向旋转90°9.教室的打开和关上,门的运动是()。
A. 平移B. 旋转C. 既平移又旋转10.小明用如下图所示的胶滚沿从左到右的方向将图案滚涂到墙上,下列给出的四个图案中,符合图示胶滚涂出的图案是()A. AB. BC. CD. D11.绕点O顺时针旋转()度后,又回到原来位置。
A. 270B. 180C. 36012.下面的图案用到了()原理A. 平移B. 旋转C. 对称二、填空题13.时针从8:00到11:00,按________时针方向旋转了________°,从1时到1时10分,分针旋转了________。
.14.下图是由几种完全一样的图形拼成的图案,请你先在图案中找出基本图形,它们分别是________、________、________和________。
15.简单的图案设计步骤分为________、________、________。
2021年中考数学压轴题满分训练–几何综合问题1.如图,两直角三角形ABC和DEF有一条边BC与EF在同一直线上,且∠DFE = ∠ACB = 60°,BC = 1,EF =2.设EC = m(0≤m≤4)点M在线段AD上,且∠MEB = 60°.(1)如图1,当点C和点F重合时, MNMN = _________(2)如图2,将图1中的△ABC绕点C逆时针旋转,当点A落在DF边上时,求 ANBN 的值;(3)当点C在线段EF上时,△ABC绕点C逆时针旋转α度(0 < α< 90°),原题中其他条件不变,则 AMMH = _________ .2.在△ABC中,∠BAC = 90°,点E为AC上 = 点,AB = AE,AG⊥BE,交BE于点H,交BC于点G,点M是BC边上的点.(1)如图1,若点M与点G重合,AH = 2,BC = √26,求CE的长;(2)如图2,若AB = BM,连接MH,∠HMG = ∠MAH,求证:AM = 2= √2HM;(3)如图3,若点M为BC的中点,作点B关于AM的对称点M,连接AN、MN、EN,请直接写出∠AMH、∠ME、∠MNE之间的角度关系.B3.已知∠AOB = a(0° < α < 90°),点P、点M分别在射线OA、OB上,∠PMO为钝角,将线段PM绕点P顺时针旋转180°-α,得到线段PN,连接ON.(1)如图1①求证:∠OMP = ∠OPN;②若α = 45°,OP = 2,直接写出△OPM的面积为 _________ ;(2)如图2,点C在射线OB上,使PC = OM,点D为MC的中点,连接PD.①若α = 60°,求证:△OPD是等边三角形;②若α = 30°,直接写出∠OPD的度数为 _________ .4.(1)问题发现:如图1,在△ABC中,AB = AC,∠BAC = 90°,点D在线段BC上运动(不与点B重合),连接AD,将线段AD绕点A逆时针旋转90°,得到AE,连接EC.填空:线段BD和CE的数量关系为 _________ ,位置关系为 _________ :(2)探究证明:如图2,在(1)的条件下,若点D在线段BC的延长线上运动,请你判断(1)中的结论是否仍然成立,并说明理由;(3)拓展延伸:如图3,在锐角△ABC中,AB≠AC,AC = 2= √2,∠ACB = 4°,若点D在线段BC上运动,连接AD,将线段AD绕点A逆时针旋转90°,得到AB,连接EC,过点D作DF⊥AD交CE于点F.请求出线段CF收得最大做时△ADC的面积.5.已知△ABC是等边三角形,AD⊥BC于点D,点E是直线AD上的动点,将BE 绕点B顺时针方向旋转60°得到BF,连接EF,CF,AF.(1)问题发现:如图1,当点E在线段AD上时,且∠AFC = 35°,则∠FMC的度数是 _________ ;(2)结论证明:如图2,当点E在线段AD的延长线上时,请判断∠AFC和∠FMC 的数量关系,并证明你的结论;(3)拓展延伸:若点E在直线AD上运动,若存在一个位置,使得△ACF是等腰直角三角形,请直接写出此时∠EBC的度数.6.(1)D为△ABC上一点,∠ADC = 60°,∠ACD -∠EBD = 60°,S△ADB = 9√3.①如图(1),若BD = CD.求证,AC = BE;②如图(2),CD = 2DB,BE平分∠ABD,求AB·ED的值.(2)如图(3),将R△ABC顺时针旋转a′(K << 90)得到△EDC,AB = 2. BC = 1.AE、BD交于点F,在运动过相中BF的最大值为 _________ .7.综合与实践,探究特殊三角形中的相关问题问题情境:某校学习小组在探究学习过程中,将两块完全相同的且含60°角的直角三角板ABC和AFE按如图1所示位置放置,且Rt△ABC的按短直角边AB为2,现将Rt△AEF绕A点按逆时针方向旋转a(0°<a< 90°),如图2,AE与BC 变于点M, B C与FF交于点N,BC与EF交于点P.(1)初步探究:勤思小组的同学提出:当旋转角α= _________ 时,△AMC是等腰三角形;(2)深入探究:敏学小组的同学提出在旋转过程中.如果连接AP,CE,那么AP所在的直线是线段CE的垂直平分线,请帮他们证明;(3)再探究:在旋转过程中,当旋转角α= 30°时,求△ABC与△AFE重叠的面积;(4)拓展延伸:在旋转过程中,△CPN是否能成为直角三角形?若能,直接写出旋转角α的度数:若不能,说明理由.8.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD = BD,DE是△ABD的平分线,BC = 1,求CD的长度:(2)如图2,连接CE,求证:DE =√2CE + AE:(3)如图3,改变ABCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP,取AD的中点O,连接OP.当AC = 2时,直接写出OP长度的最大值.9.在R△AOB和R△COD中,∠AOB = ∠COD = 90°,直线AC与BD交于点M.(1)如图1,若∠OAB = ∠OCD = 45°,填空:① BDAC 的值为_________ :②∠AMB的度数为 _________ .(2)如图2,若∠OAB = ∠OCD = a,求 BDAC 的值(用含α的式子表示)及∠AMB的度数;3)若∠0AB = ∠OCD = 30°,OD = 2,OB = 4,将三角形OCD绕着点O在平面内旋转,直接写出当点A、C、D在同一直线上时,线段BD的长.10.如图,在△ABC中,AC = BC,∠ACB = CB点D、E在AB边上(点D在点E 的右侧),且∠ACB = 2∠DCE.将线段CD绕点C′针旋转α角得到线段CF,连接AF、EF.[感知]如图①,当α= 60°时,则△CBD≌△CAF,△CDE≌△CFE.(不需要证明)[探究]如图②,当α= 90°时,(1)∠EAF的度数为 _________ .(2)线段AE、ED、DB之间什么数量关系?请说明理由.[应用](3)如图③,当α= 120°,∠BCD = 15°时,请直接写出△BCD、△DCE、△ACE这三个三角形的面积比.11.如图,R△ABC中,∠ACB = 90°,AC = 8,BC = 6.点P从点A出发,沿射线AB方向以每秒5个单位长度的速度向终点B运动,当点P不与点A里合时,将线段PM绕点P旋转使PH∥AC(点A′在点P右侧),过点A′作A′M⊥AB 交射线AB于点M.设点P运动的时间为t(秒)(1 > 0).(1)AM的长为 _________ (用含t的代数式表示).(2)求点A′落在边BC上时t的值.(3)当△ABC与△PM′M重叠部分图形为三角形时,设三角形的面积为S(平方单位),求S与t之间的函数关系式.(4)设点A′关于直线AB的对称点为A″,连接A″B,当直线A″B和△ABC 的边垂直时,直接写出t的值.12.(1)(问题发现)如图1,△ABC和△ADE均为等边三角形,点B,D,E在同一条直线上.填空:①线段BD,CE之间的数量关系为 _________ ;②∠BEC = _________ °.(2)(类比探究)如图2,△ABC和△ADE均为等腰直角三角形,∠ACB = ∠AED = 90°,AC = BC,AE = DE,点B,D,E在同一条直线上,请判断线段BD,CE之间的数量关系及∠BEC的度数,并给出证明.(3)(解决问题)如图3,在△ABC中,∠ACB = 90°,∠A = 30°,AB = 5,点D在AB边上,DE⊥AC于点E,AE = 3,将△ADE绕点A旋转,当DE所在直线经过点B时,CE的长是多少?(直接写出答案)13.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C = 90°,∠B = 30°,[操作发现]①如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,则∠ACD的度数是_________ :②△BDC的面积与△AEC的面积之间的数量关系是 _________ .[探究论证]当ADEC绕点C旋转到图3所示的位置时,猜想△BDC的面积与△MEC的面积的数量关系,并说明理由.14.[问题发现]如图1,在R△ABC中,AB = AC,D为BC边上-点(不与点B、C 重合)将线段AD绕点A顺时针旋转90°得到AE。
2018-2019年小升初六年级期末毕业数学试题(共十套试卷)一、看清题目,巧思妙算。
(共30分) 1、直接写得数(每小题1分,共10分)85+0.25= 1787-998= 1÷20%= 6÷0.05=12.5×32×2.5= 5-=+9792 9.7-0.03= 54×25==+-+31213121=⨯÷737112、求未知数X (每小题2分,共8分) 1.8χ-0.7=2.9 7385=-χχ80%χ-18×32=4χ4.6=0.12:1.53、计算下列各题,能简算的要简算(每小题3分,共12分)。
1853-(2.35+8.6) 3.5×10.181×[)×(9105321÷] (43+611-2413)×12二、认真思考,谨慎填空(每空1分,共23分)1、 2时40分=( )时 3.8公顷=( )公顷( )平方米2、在86%,76,0.88,98四个数中,最大的数是( ),最小的数是( )。
3、一幢大楼地面以上有19层,地面以下有2层,地面以上第6层记作+6层,地面以下第2层记作( )层。
4、浩浩每天放学回家要花1小时完成语文、数学、英语三科作业。
如果每科作业花的时间都一样,完成每科作业需( )分钟,每科作业占总时间的( )。
5、将圆规两脚之间的距离定为( )厘米时,可以画出直径为6厘米的圆,这个圆的面积是( )平方厘米。
6、把右边的长方形以它的长为轴旋转一周,会得到一个( ),体积是( )立方厘米 。
7、按糖和水的比为1:19配制一种糖水,这种糖水的含糖率是( ) 现有糖50克,可配制这种糖水( )克。
8、有一种手表零件长5毫米。
在设计图纸上的长度是10厘米,这幅图纸的比例尺是( )。
9、右图是某粮食仓库储藏情况统计图。
已知仓库中大豆有4吨,那么其中玉米( )吨。
10、有40张5元和1元的人民币,面值共152元,5元的有( )张,1元的有( )张。
如图,△ABC 内接于⊙O,点 D 在半径 OB 的延长线上,∠BCD=∠A=30°。
若⊙O 的 半径长为 1,求由弧 BC、线段 CD 和 BD 所围成的阴影部分面积【结果保留 π 和根号】 。
连接 OB ∵∠A=30° ∴∠BOC=60° ∵OB=OC ∴∠OBC=60° ∵∠BCD=30° ∴∠D=30° ∴∠OCD=180°-60°-30°=90° ∴CD 与⊙O 相切 阴影的面积=S△OCD-扇形 OCB 的面积 ∵∠D=30° ∴ DC=√3 S△OCD=1X√3X1/2=√3/2 扇形 OCB 的面积=1/6S⊙O=1/6π ∴阴影的面积=√3/2-1/6π( 2013 •毕 节 地 区 ) 四 边 形 ABCD 是 正 方 形 , E 、 F 分 别 是 DC 和 CB 的 延 长 线 上 的 点 , 且 DE=BF , 连 接 AE 、 AF 、 EF . ( 1 ) 求 证 : △ ADE ≌ △ ABF ; ( 2 ) 填 空 : △ ABF 可 以 由 △ ADE 绕 旋 转 中 心 点 , 按 顺 时 针 方 向 旋 转 (3)若 BC=8,DE=6,求△AEF 的面积.(1)证明:∵AD=AB,DE=BF,∠ABF=∠ADE,∴△ADE≌△ABF;(SAS) (2)△ABF 可以由△ADE 绕旋转中心点 A,按顺时针方向旋转 90 度得到; (3)AD=BC=8,DE=6,∴AE=10(勾股数) ∵△ADE≌△ABF,∴AF=AE=10,∠DAE=∠BAF, ∴∠DAE+∠EAB=∠BAF+∠EAB=∠DAB=90° , ∴S△AEF=AF•AE/2=10×10/2=50等式的基本性质是什么?性质 1.“等式两边同时加上或减去同一个数,等式仍然成立” 性质 2.“等式两边同时乘或除以同一个数(除数不能为 0), 等式仍然成 立” 性质的应用:去分母、移项的依据是等式的性质 1; 系数化为一的依据是等式的性质 2; 去括号的依据是乘法分配律 合并同类项的依据是乘分配律的逆用【 1. 所含字母相同,并且相同字母的指数也相同 的项, 叫做同类项。
第3单元旋转压轴精选30题一.选择题(共8小题)1.如图,△ABC是等边三角形,D为BC边上的点,∠BAD=15°,△ABD经旋转后到达△ACE的位置,那么旋转了()A.75°B.60°C.45°D.15°【答案】B【解答】解:∵△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵△ABD经旋转后到达△ACE的位置,∴∠BAC等于旋转角,即旋转角等于60°.故选:B.2.如图直角梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=3,将腰CD以D 为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是()A.1B.2C.3D.不能确定【答案】A【解答】解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,∵CD以D为中心逆时针旋转90°至ED,∴∠EDF+∠CDF=90°,DE=CD,又∵∠CDF+∠CDG=90°,∴∠CDG=∠EDF,在△DCG与△DEF中,,∴△DCG≌△DEF(AAS),∴EF=CG,∵AD=2,BC=3,∴CG=BC﹣AD=3﹣2=1,∴EF=1,∴△ADE的面积是:×AD×EF=×2×1=1.故选:A.3.将五个边长都为2cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心(对角线的交点),则图中四块阴影面积的和为()A.2cm2B.4cm2C.6cm2D.8cm2【答案】B【解答】解:如图,连接AP,AN,点A是正方形的对角线的交点.则AP=AN,∠APF=∠ANE=45°,∵∠P AF+∠FAN=∠FAN+∠NAE=90°,∴∠P AF=∠NAE,∴△P AF≌△NAE,∴四边形AENF的面积等于△NAP的面积,而△NAP的面积是正方形的面积的,而正方形的面积为4,∴四边形AENF的面积为1cm2,四块阴影面积的和为4cm2.故选:B.4.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B.C.D.﹣1【答案】D【解答】方法一:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,=×OD•AD=,∴S△ADO∴四边形AB1OD的面积是=2×=﹣1,方法二:解:∵四边形ABCD是正方形,∴AC=,∠OCB1=45°,∴CB1=OB1∵AB1=1,∴CB1=OB1=AC﹣AB1=﹣1,=•OB1•CB1=(﹣1)2,∴S△OB1C=AD•AC=×1×1=,∵S△ADC=S△ADC﹣S△OB1C=﹣(﹣1)2=﹣1;∴S四边形AB1OD故选:D.5.如图,在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2015次后,顶点A在整个旋转过程中所经过的路程之和是()A.2015πB.3019.5πC.3018πD.3024π【答案】D【解答】解:转动一次A的路线长是:,转动第二次的路线长是:,转动第三次的路线长是:,转动第四次的路线长是:0,转动五次A的路线长是:,以此类推,每四次循环,故顶点A转动四次经过的路线长为:+2π=6π,2015÷4=503余3顶点A转动2015次经过的路线长为:6π×504=3024π.故选:D.6.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=()A.1:B.1:2C.:2D.1:【答案】B【解答】解:如图,连接AP,∵BP绕点B顺时针旋转90°到BP′,∴BP=BP′,∠ABP+∠ABP′=90°,又∵△ABC是等腰直角三角形,∴AB=BC,∠CBP′+∠ABP′=90°,∴∠ABP=∠CBP′,在△ABP和△CBP′中,∵,∴△ABP≌△CBP′(SAS),∴AP=P′C,∵P′A:P′C=1:3,∴AP=3P′A,连接PP′,则△PBP′是等腰直角三角形,∴∠BP′P=45°,PP′=PB,∵∠AP′B=135°,∴∠AP′P=135°﹣45°=90°,∴△APP′是直角三角形,设P′A=x,则AP=3x,根据勾股定理,PP′===2x,∴PP′=PB=2x,解得PB=2x,∴P′A:PB=x:2x=1:2.故选:B.7.如图,该图形围绕自己的旋转中心,按下列角度旋转后,不能与其自身重合的是()A.72°B.108°C.144°D.216°【答案】B【解答】解:该图形被平分成五部分,旋转72度的整数倍,就可以与自身重合,因而A、C、D都正确,不能与其自身重合的是B.故选:B.8.如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③【答案】A【解答】解:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S 四边形AOBO′=S△AOO′+S△OBO′=×3×4+×42=6+4,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=×3×4+×32=6+,则S△AOC故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选:A.二.填空题(共16小题)9.如图,在Rt△ABC中,已知∠C=90°,∠B=30°,点D在边AB上,,把△ADC绕点D逆时针旋转m(0°<m<180°)度后,如果点A恰好落在初始Rt△ABC的边上,那么m=60°或120°.【答案】60°或120°.【解答】解:如图,D以为圆心,以AD为半径画圆,分别交AC于A1,交BC于A2、交DB于A3.∵∠B=30°,∠C=90°,∴∠A=60°且AD=A1D,∴△AA1D是等边三角形,∴①旋转角m=∠ADA1=60°.②在Rt△BDA2中,∵BD=AD,且∠B=30°,∴BC与圆相切于A点,∴∠BDA2=60°,旋转角m=∠ADA2=180°﹣∠BDA2=120°.③当旋转到A3时,刚好旋转了180°,不符合题意,.故答案为:60°或120°.10.如图,△ABC中,∠ACB=90°,把△ABC绕点C顺时针旋转到△A1B1C的位置,A1B1交直线CA于点D.若AC=6,BC=8,当线段CD的长为6或5或时,△A1CD是等腰三角形.【答案】见试题解答内容【解答】解:三角形是等腰三角形,有如下三种情况:①当CD=A1C=AC=6时,三角形是等腰三角形;②当CD=A1D时,∵∠B=90°﹣∠BCB1=∠ACB1,∠B=∠B1,∴∠B1=∠B1CD,∴B1D=CD.∵CD=A1D,∴CD=A1B1=5时,三角形是等腰三角形;③当A1C=A1D时,如图.过点C作CE⊥A1B1于E.∵△A1B1C的面积=×6×8=×10×CE,∴CE=4.8.在△A1CE中,∠A1EC=90°,由勾股定理知A1E==3.6,∴DE=6﹣3.6=2.4.在△CDE中,∠CED=90°,由勾股定理知CD==.故当线段CD的长为6或5或时,△A1CD是等腰三角形.11.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△P AC 绕点A逆时针旋转60°后,得到△P′AB,则点P与P′之间的距离为6,∠APB=150°.【答案】见试题解答内容【解答】解:连接PP′,如图,∵△P AC绕点A逆时针旋转60°后,得到△P′AB,∴∠P AP′=60°,P A=P′A=6,P′B=PC=10,∴△P AP′为等边三角形,∴PP′=PA=6,∠P′PA=60°,在△BPP′中,P′B=10,PB=8,PP′=6,∵62+82=102,∴PP′2+PB2=P′B2,∴△BPP′为直角三角形,且∠BPP′=90°,∴∠APB=∠P′PB+∠BPP′=60°+90°=150°.故答案为6,150°.12.如图,边长为1的正方形ABCD绕点A逆时针旋转30°,得到正方形AB′C′D′,则图中阴影部分的面积为.【答案】见试题解答内容【解答】解:设B′C′与CD交于点E,连接AE.在△AB′E与△ADE中,∠AB′E=∠ADE=90°,∵,∴△AB′E≌△ADE(HL),∴∠B′AE=∠DAE.∵∠BAB′=30°,∠BAD=90°,∴∠B′AE=∠DAE=30°,∴DE=AD•tan∠DAE=.=2S△ADE=2××=.∴S四边形AB′ED﹣S四边形AB′ED=1﹣=.∴阴影部分的面积=S正方形ABCD13.如图,在Rt△ABC中,已知:∠C=90°,∠A=60°,AC=3cm,以斜边AB的中点P为旋转中心,把这个三角形按逆时针方向旋转90°得到Rt△A′B′C′,则旋转前后两个直角三角形重叠部分的面积为cm2.【答案】见试题解答内容【解答】解:设A′B′交BC于D,在直角△DPB中,BP=AP=AC=3,∵∠A=60°设PD=x,则BD=2x,∵DP2+BP2=BD2,∴x2+32=(2x)2,∴DP=x=,∵B′P=BP,∠B=∠B′,∠B′PH=∠BPD=90°,∴△B′PH≌△BPD,∴PH=PD=,∵在直角△BGH中,BH=3+,∴GH=,BG=,=××=,S△BDP=×3×=,∴S△BGH∴S DGHP==cm2.14.如图所示,把一个直角三角尺ACB绕着30°角的顶点B顺时针旋转,使得点A落在CB的延长线上的点E处,则∠BDC的度数为15度.【答案】见试题解答内容【解答】解:根据旋转的性质△ABC≌△EDB,BC=BD,则△CBD是等腰三角形,∠BDC=∠BCD,∠CBD=180°﹣∠DBE=180°﹣30°=150°,∠BDC=(180°﹣∠CBD)=15°.故答案为15°.15.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为42cm.【答案】见试题解答内容【解答】解:∵将△ABC绕点B顺时针旋转60°,得到△BDE,∴△ABC≌△BDE,∠CBD=60°,∴BD=BC=12cm,∴△BCD为等边三角形,∴CD=BC=CD=12cm,在Rt△ACB中,AB==13,△ACF与△BDF的周长之和=AC+AF+CF+BF+DF+BD=AC+AB+CD+BD=5+13+12+12=42(cm),故答案为:42.16.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A′恰好落在AC上,连接CC′,则∠ACC′=110°.【答案】见试题解答内容【解答】解:∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°﹣2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°;故答案为:110°.17.如图,边长为6的等边三角形ABC中,E是对称轴AD上的一个动点,连接EC,将线段EC绕点C逆时针旋转60°得到FC,连接DF.则在点E运动过程中,DF的最小值是 1.5.【答案】见试题解答内容【解答】解:如图,取AC的中点G,连接EG,∵旋转角为60°,∴∠ECD+∠DCF=60°,又∵∠ECD+∠GCE=∠ACB=60°,∴∠DCF=∠GCE,∵AD是等边△ABC的对称轴,∴CD=BC,∴CD=CG,又∵CE旋转到CF,∴CE=CF,在△DCF和△GCE中,,∴△DCF≌△GCE(SAS),∴DF=EG,根据垂线段最短,EG⊥AD时,EG最短,即DF最短,此时∵∠CAD=×60°=30°,AG=AC=×6=3,∴EG=AG=×3=1.5,∴DF=1.5.故答案为:1.5.18.如图,在△ABC中,AB=2,BC=3.6,∠B=60°,将△ABC绕点A按顺时针旋转一定角度得到△ADE,当点B的对应点D恰好落在BC边上时,则CD的长为 1.6.【答案】见试题解答内容【解答】解:由旋转的性质可得:AD=AB,∵∠B=60°,∴△ABD是等边三角形,∴BD=AB,∵AB=2,BC=3.6,∴CD=BC﹣BD=3.6﹣2=1.6.故答案为:1.6.19.如图,在平面直角坐标系中,已知点A(﹣3,0),B(0,4),对△AOB 连续作旋转变换,依次得到三角形①,②,③,…,那么第⑤个三角形离原点O最远距离的坐标是(21,0),第2012个三角形离原点O最远距离的坐标是(8049,0).【答案】见试题解答内容【解答】解:∵点A(﹣3,0),B(0,4),∴OB=4,OA=3,∴AB=5,∵对△OAB连续作如图所示的旋转变换,∴△OAB每三次旋转后回到原来的状态,并且每三次向前移动了3+4+5=12个单位,而2012=3×670+2,∴第⑤个三角形和第2012个三角形都和三角形②的状态一样,∴2012个三角形离原点O最远距离的点的横坐标为670×12+9=8049,纵坐标为0.第⑤三角形离原点O最远距离的点的横坐标为12+9=21,纵坐标为0.故答案为(21,0),(8049,0).20.已知△ABC是边长为1cm的等边三角形,以BC为边作等腰三角形BCD,使得DB=DC,且∠BDC=120°,点M是AB边上的一个动点,作∠MDN 交AC边于点N,且满足∠MDN=60°,则△AMN的周长为2.【答案】见试题解答内容【解答】证明:如图,在AC延长线上截取CM1=BM,∵△ABC是等边三角形,△BDC是顶角∠BDC=120°的等腰三角形,∴∠ABC=∠ACB=60°,∠DBC=∠DCB=30°,∴∠ABD=∠ACD=90°,∴∠DCM1=90°,∵BD=CD,∵在Rt△BDM≌Rt△CDM1中,BD =CD ∠ABD =∠DCM 1=90°CM 1=BM ,∴Rt △BDM ≌Rt △CDM 1(SAS ),得MD =M 1D ,∠MDB =∠M 1DC ,∴∠MDM 1=120°﹣∠MDB +∠M 1DC =120°,∴∠NDM 1=60°,∵MD =M 1D ,∠MDN =∠NDM 1=60°,DN =DN ,∴△MDN ≌△M 1DN ,∴MN =NM 1,故△AMN 的周长=AM +MN +AN =AM +AN +NM 1=AM +AM 1=AB +AC =2.故答案为:2.21.如图,△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,若∠BAC =90°,AB =AC =,则图中阴影部分的面积等于﹣1.【答案】见试题解答内容【解答】解:∵△ABC 绕点A 顺时针旋转45°得到△AB ′C ′,∠BAC =90°,AB =AC =,∴BC =2,∠C =∠B =∠CAC ′=∠C ′=45°,∴AD ⊥BC ,B ′C ′⊥AB ,∴AD =BC =1,AF =FC ′=sin45°AC ′=AC ′=1,∴图中阴影部分的面积等于:S △AFC ′﹣S △DEC ′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.22.已知:在△ABC中,∠CAB=70°,在同一平面内将△ABC绕A点旋转到△AB′C′位置,且CC′∥AB,则∠BAB′的度数是40°.【答案】见试题解答内容【解答】解:∵CC′∥AB,∠CAB=70°,∴∠C′CA=∠CAB=70°,又∵C、C′为对应点,点A为旋转中心,∴AC=AC′,即△ACC′为等腰三角形,∴∠BAB′=∠CAC′=180°﹣2∠C′CA=40°.故填:40°.23.如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是19.【答案】见试题解答内容【解答】解:∵△ABC是等边三角形,∴AC=AB=BC=10,∵△BAE由△BCD逆时针旋旋转60°得出,∴AE=CD,BD=BE,∠EBD=60°,∴AE+AD=AD+CD=AC=10,∵∠EBD=60°,BE=BD,∴△BDE是等边三角形,∴DE=BD=9,∴△AED的周长=AE+AD+DE=AC+BD=19.故答案为:19.24.如图:已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC 中点,两边PE,PF分别交AB,AC于点E,F,给出以下五个结论:①AE=CF;②∠APE=∠CPF;③△EPF是等腰直角三角形;④EF=AP;⑤S四边形AEPF=S△ABC.当∠EPF在△ABC内绕顶点P旋转时(点E不与A,B重合),上述结论中始终正确的序号有①②③⑤.【答案】见试题解答内容【解答】解:∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=∠BAC=45°,AP=BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°﹣∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②由①知,△AEP≌△CFP,∴∠APE=∠CPF.正确;③由①知,△AEP≌△CFP,∴PE=PF.又∵∠EPF=90°,∴△EPF是等腰直角三角形.正确;④只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;⑤∵△AEP≌△CFP,同理可证△APF≌△BPE.=S△AEP+S△APF=S△CPF+S△BPE=S△ABC.正确.∴S四边形AEPF故正确的序号有①②③⑤.三.解答题(共6小题)25.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.(1)思路梳理∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线.根据SAS,易证△AFG≌△AFE,得EF=BE+DF.(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD 上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.【答案】见试题解答内容【解答】解:(1)∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(2)∠B+∠D=180°时,EF=BE+DF;∵AB=AD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠F AG,∵∠ADC+∠B=180°,∴∠FDG=180°,点F、D、G共线,在△AFE和△AFG中,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.(3)猜想:DE2=BD2+EC2,证明:把△AEC绕点A顺时针旋转90°得到△ABE′,连接DE′,∴△AEC≌△ABE′,∴BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,在Rt△ABC中,∵AB=AC,∴∠ABC=∠ACB=45°,∴∠ABC+∠ABE′=90°,即∠E′BD=90°,∴E′B2+BD2=E′D2,又∵∠DAE=45°,∴∠BAD+∠EAC=45°,∴∠E′AB+∠BAD=45°,即∠E′AD=45°,在△AE′D和△AED中,∴△AE′D≌△AED(SAS),∴DE=DE′,∴DE2=BD2+EC2.26.已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N.当∠MAN绕点A旋转到BM=DN时(如图1),易证BM+DN=MN.(1)当∠MAN绕点A旋转到BM≠DN时(如图2),线段BM、DN和MN 之间有怎样的数量关系?写出猜想,并加以证明;(2)当∠MAN绕点A旋转到如图3的位置时,线段BM、DN和MN之间又有怎样的数量关系?请直接写出你的猜想.【答案】见试题解答内容【解答】解:(1)BM+DN=MN成立.证明:如图,把△ADN绕点A顺时针旋转90°,得到△ABE,则可证得E、B、M三点共线(图形画正确).∴∠EAM=90°﹣∠NAM=90°﹣45°=45°,又∵∠NAM=45°,∴在△AEM与△ANM中,∴△AEM≌△ANM(SAS),∴ME=MN,∵ME=BE+BM=DN+BM,∴DN+BM=MN;(2)DN﹣BM=MN.在线段DN上截取DQ=BM,在△ADQ与△ABM中,∵,∴△ADQ≌△ABM(SAS),∴∠DAQ=∠BAM,∴∠QAN=∠MAN.在△AMN和△AQN中,∴△AMN≌△AQN(SAS),∴MN=QN,∴DN﹣BM=MN.27.阅读与理解:图1是边长分别为a和b(a>b)的两个等边三角形纸片ABC和C′DE叠放在一起(C与C′重合)的图形.操作与证明:(1)操作:固定△ABC,将△C′DE绕点C按顺时针方向旋转30°,连接AD,BE,如图2;在图2中,线段BE与AD之间具有怎样的大小关系?证明你的结论;(2)操作:若将图1中的△C′DE,绕点C按顺时针方向任意旋转一个角度α(0°≤α≤360°),连接AD,BE,如图3;在图3中,线段BE与AD之间具有怎样的大小关系?证明你的结论;猜想与发现:根据上面的操作过程,请你猜想当α为多少度时,线段AD的长度最大是多少?当α为多少度时,线段AD的长度最小是多少?【答案】见试题解答内容【解答】解:操作与证明:(1)BE=AD.∵△C′DE绕点C按顺时针方向旋转30°,∴∠BCE=∠ACD=30°,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.(2)BE=AD.∵△C′DE绕点C按顺时针方向旋转的角度为α,∴∠BCE=∠ACD=α,∵△ABC与△C′DE是等边三角形,∴CA=CB,CE=CD,∴△BCE≌△ACD,∴BE=AD.猜想与发现:当α为180°时,线段AD的长度最大,等于a+b;当α为0°(或360°)时,线段AD的长度最小,等于a﹣b.28.(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC 按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,求证:DE′=DE.(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).求证:DE2=AD2+EC2.【答案】见试题解答内容【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABE′由△CBE旋转而成,∴BE=BE′,∠ABE′=∠CBE,∴∠DBE′=∠DBE,在△DBE与△DBE′中,∵,∴△DBE≌△DBE′(SAS),∴DE′=DE;(2)证明:如图所示:把△CBE逆时针旋转90°,连接DE′,∵BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AE′重合,∴AE′=EC,∴∠E′AB=∠BCE=45°,∴∠DAE′=90°,在Rt△ADE′中,DE′2=AE′2+AD2,∵AE′=EC,∴DE′2=EC2+AD2,同(1)可得DE=DE′,∴DE2=AD2+EC2.29.图中是一副三角板,45°的三角板Rt△DEF的直角顶点D恰好在30°的三角板Rt△ABC斜边AB的中点处,∠A=30°,∠E=45°,∠EDF=∠ACB =90°,DE交AC于点G,GM⊥AB于M.(1)如图①,当DF经过点C时,作CN⊥AB于N,求证:AM=DN;(2)如图②,当DF∥AC时,DF交BC于H,作HN⊥AB于N,(1)的结论仍然成立,请你说明理由.【答案】见试题解答内容【解答】(1)证明:∵∠ACB=90°,D是AB的中点.∴CD=AD=BD,又∵∠B=90°﹣∠A=60°,∴△BCD是等边三角形.又∵CN⊥DB,∴DN=DB.∵∠EDF=90°,△BCD是等边三角形,∴∠ADG=30°,而∠A=30°.∴GA=GD.∵GM⊥AB,∴AM=AD.又∵AD=DB,∴AM=DN.(2)解:(1)的结论依然成立.理由如下:∵DF∥AC,∴∠1=∠A=30°,∠AGD=∠GDH=90°,∴∠ADG=60°.∵∠B=60°,AD=DB,∴△ADG≌△DBH,∴AG=DH.又∵GM⊥AB,HN⊥AB,∴∠GMA=∠HND=90°,∵∠1=∠A,∴Rt△AMG≌Rt△DNH,∴AM=DN.30.如图,等腰直角△ABC中,∠ABC=90°,点P在AC上,将△ABP绕顶点B沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3时,求PQ的大小;(3)当点P在线段AC上运动时(P不与A重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.【答案】见试题解答内容【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CBQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ是等腰直角三角形,△PCQ是直角三角形.(2)当AB=4,AP:PC=1:3时,有AC=4,AP=,PC=3,∴PQ==2.(3)存在2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=PB,∵AP=CQ,∴PQ2=PC2+CQ2=P A2+PC2,故有2PB2=PA2+PC2.。