4.1 有理数指数幂
- 格式:pptx
- 大小:380.07 KB
- 文档页数:20
第4章 幂函数、指数函数和对数函数4.1 实数指数幂和幂函数4.1.1 有理数指数幂 4.1.2 无理数指数幂必备知识基础练1.(天津滨海新区高一期中)下列运算正确的是( ) A.a 2·a 3=a 6 B.(3a)3=9a 3 C.√a 88=aD.(-2a 2)3=-8a 62.若a<0,则化简a √-1a得( ) A.-√-a B.√-a C.-√aD.√a3.(福建福州三中高一期中)已知x 2+x -2=3,则x+x -1的值为( ) A.√5B.1C.±√5D.±14.(112)0-(1-0.5-2)÷(278)23的值为( )A.-13B.13C.43D.735.若√4a 2-4a +1=1-2a,则a 的取值范围是 .关键能力提升练6.(河北张家口张垣联盟高一联考)将根式√a √a √aa(a>0)化简为指数式是( ) A.a -18B.a 18C.a -78D.a -347.已知x 2+x -2=2√2,且x>1,则x 2-x -2的值为( ) A.2或-2 B.-2 C.√6D.28.(多选题)下列根式与分数指数幂的互化正确的是( ) A.-√x =(-x )12B.√y 26=y 12(y<0)C.x-13=√x3(x≠0)D.[√(-x )23]34=x 12(x>0)9.若a>0,b>0,则化简√b 3a√a2b6的结果为 .10.化简:(2-a)[(a-2)-2(-a )12]12= . 11.化简求值:(1)0.125-13−(98)0+[(-2)2]32+(√2×√33)6;(2)(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1.学科素养创新练12.(黑龙江大庆实验中学高一期末)已知实数x 满足3×16x +2×81x =5×36x ,则x 的值为 . 答案:1.D a 2·a 3=a 5,故A 错误;(3a)3=27a 3,故B 错误;√a 88=|a|={a ,a ≥0,-a ,a <0,故C错误;(-2a 2)3=-8a 6,故D 正确.故选D.2.A ∵a<0,∴a √-1a=-√a 2×√-1a=-√a 2(-1a)=-√-a .故选A.3.C 由(x+x -1)2=x 2+x -2+2=5,可得x+x -1=±√5.故选C.4.D 原式=1-(1-22)÷(32)2=1-(-3)×49=73.故选D.5.(-∞,12] ∵√4a 2-4a +1=√(2a -1)2=|2a-1|=1-2a,∴2a-1≤0,即a≤12.6.A√a √a √aa=a 12+14+18-1=a -18,故选A.7.D (方法1)∵x>1,∴x 2>1. 由x -2+x 2=2√2,可得x 2=√2+1, ∴x 2-x -2=√2+1-√2+1=√2+1-(√2-1)=2.(方法2)令x 2-x -2=t,① ∵x -2+x 2=2√2,②∴由①2-②2,得t 2=4.∵x>1,∴x 2>x -2, ∴t>0,于是t=2,即x 2-x -2=2,故选D. 8.CD 对于选项A,因为-√x =-x 12(x≥0), 而(-x )12=√-x (x≤0),所以A 错误;对于选项B,因为√y 26=-y 13(y<0),所以B 错误; 对于选项C,x-13=√x3(x≠0),所以C 正确;对于选项D,[√(-x )23]34=x 2×13×34=x 12(x>0),所以D 正确.9.1 √b 3a√a 2b 6=√b 3a(a 2b 6)12=√b 3a ab 3=1. 10.(-a )14由已知条件知a≤0, 则(a-2)-2=(2-a)-2,所以原式=(2-a)[(2-a)-2·(-a )12]12=(2-a)(2-a)-1(-a )14=(-a )14.11.解(1)根据指数幂与根式的运算,化简可得0.125-13−(98)0+[(-2)2]32+(√2×√33)6=[(2)-3]-13−(98)0+(22)32+(212×313)6=2-1+8+(212)6(313)6=2-1+8+8×9 =81.(2)由分数指数幂及根式的运算,化简可得(5116)0.5+√(-10)2-2√3×√276-4π0÷(34)-1=[(32)4]0.5+10-2√3×(33)16-4×34=94+10-2√3×√3-3 =94+10-6-3=134.12.0或12因为3×16x +2×81x =5×36x ,所以3×24x +2×34x =5×(2×3)2x ,则3×24x +2×34x =5×22x ×32x ,所以3×24x +2×34x -5×22x ×32x =0,即(3×22x -2×32x )(22x -32x )=0,所以3×22x -2×32x =0,或22x -32x =0,解得x=12或x=0.。
《实数指数幂和幂函数》教学设计 4.1.1有理数指数幂一.课程标准认识有理数指数幂mna 含义,掌握指数幂的运算性质.二.教学目标1.理解根式的概念及性质,掌握分数指数幂的运算性质;2.能够熟练的进行分数指数幂与根式的互化.三、教学重点:根式的概念及n 次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.四、教学难点:n 次方根的性质;分数指数幂的意义及分数指数幂的运算. 五、教学过程一、创设情境,引入课题 1. 平方根和和立方根. 2.正整数指数幂的运算性质 二、归纳探索,形成概念 1. n 次方根若一个(实)数x 的n 次方,(2)n N n ∈≥等于a ,即n x a =,就说x 是a 的n 次方根。
那么如何表示n 次方根呢?我们分n 为奇数和n 为偶数两种情况来分别讨论n 次方根的表示方法。
例如,2=2=-;33x =-时,有x =若23x =,则x =43x =,则x =(1)当n 为奇数时,a ()a R ∈的n当a >00;当a =00;当a <00.(2)当n 为偶数时,a 的n 次方根有两个,它们互为相反数,即:其中正的n 0a <时, a 的n 次方根不存在。
(3)0的n 次方根为0=0. 2.根式,(2)n N n ∈≥,n 叫作根指数,a 叫作被开方数.a =,问题3:n 与aa =是否一直成立?你能举出那些例子?7...===-7...=== 由此我们可得到1。
当na =。
2。
当na =。
问题4:那么,n 又能化简成什么呢?一直成立吗?预案:n a =,根据定义易知成立。
3.分数指数幂问题5:m a 表示什么含义(当m 为正整数的时候)?当指数为正整数时候,指数的运算都有哪些运算性质? 答:m 个a 相乘。
,,(,0)(),()m n m n mm n nm n mn m m ma a a a a m n a aa a ab a b +-==>≠== 在这里,m n 均为正整数。
4.1有理数指数幂(2)——实数指数幂【教学目标】知识目标:1、掌握实数指数幂的运算法则;2、通过几个常见的幂函数,了解幂函数的图像特点。
能力目标:1、正确进行实数指数幂的运算;2、培养学生的计算技能;3、通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力。
【教学重点】实数指数幂的运算法则,有理数指数幂的运算。
【教学难点】有理数指数幂的运算。
【教学设计】1、在复习整数指数幂的运算中,学习实数指数幂的运算;2、通过学生的动手计算,巩固知识,培养计算技能;3、通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;4、通过知识应用巩固有理数指数幂的概念。
【课时安排】2课时。
(90分钟)【教学过程】一、实数指数幂 1、复习导入整数指数幂,当*n ∈N 时,na = ; 规定当0a ≠时,0a = ; n a -= ; 分数指数幂:mna = ;0a ≠时,m na-= 。
其中*m n n ∈N 、且>1。
当n 为奇数时,a ∈R ;当n 为偶数时,0a。
例1、将下列各根式写成分数指数幂:(2.例2、将下列各分数指数幂写成根式:(1)3465-;(2)232.3()2、扩展:整数指数幂的运算法则为: (1) m n a a ⋅= ; (2) ()nm a= ;(3) ()nab = 。
其中()m n ∈Ζ、运算法则同样适用于有理数指数幂的情况3、概念当p 、q 为有理数时,有p q p q a a a +⋅=; ()qp pq a a =; ()pp p ab a b =⋅运算法则成立的条件是,出现的每个有理数指数幂都有意义。
说明:可以证明,当p 、q 为实数时,上述指数幂运算法则也成立。
4、典型例题例1、计算下列各式的值:(1)130.125; (2分析 (1)题中的底为小数,需要首先将其化为分数,有利于运算法则的利用;(2)题中,首先要把根式化成分数指数幂,然后再进行化简与计算。