《数学 基础模块》上册 4.1 有理数指数幂
- 格式:docx
- 大小:36.61 KB
- 文档页数:4
有理数指数幂教案一、条件分析1.学情分析在上个单元中,学生学习了函数的概念、表示方法、单调性、奇偶性,对函数有了初步的认识,但是还远远不够,函数是个大家庭,需要我们继续深入学习已到达实际运用的目的。
对于这个章节的内容,学生在初中已经学过,加之初数内容的补充,学生对这方面的知识掌握起来比较容易,难点在于对八个公式的记忆可能混淆,因此在学习本章节的内容时应多做练习巩固所学知识。
2.教材分析本节内容由整数指数幂、n次根式、分数指数幂构成,这三个内容环环相扣,层层递进,所以,在学习这个章节的内容时,应注意知识的内在联系。
二、三维目标知识与技能目标A层:1. 理解有理数指数幂的概念;2. 识记正整数指数幂的运算法则;3. 识记分数指数幂的运算法则;4. 理解n次方根、n次算术根的概念。
B层:1. 理解有理数指数幂的概念;2. 识记正整数指数幂的运算法则;3. 识记分数指数幂的运算法则。
C层:1. 识记正整数指数幂的运算法则;2. 识记分数指数幂的运算法则。
过程与方法目标讲授法、练习法、游戏法。
在学习有理数指数运算时通过竞答游戏激发学生学习兴趣,通过练习加深学生对所学知识的巩固。
情感态度和价值观目标通过对有理数指数幂的探究,培养学生观察、归纳、抽象的能力和语言表达能力;通过学习有理数指数幂的知识,让学生明白,对于问题的解决,我们可以采用多种方法,其中有效的方法是转化,把不熟悉的问题转化成我们所熟悉的问题就能轻松解决。
三、教学重点有理数指数幂的运算法则四、教学难点n次方根与n次算术根的区别和联系五、主要参考资料:中等职业教育课程教材数学基础模块(上)、学生学习指导用书、教学参考书。
六、教学进程:故事导入:谣言的力量某人听到一则谣言后一小时内传给两人,以后他没有再传给别人.而那两人同样在一小时内每人又分别传给另外的两人。
如此下去,一昼夜能传遍一个千万人口的大城市吗?能?还是不能?请注意,一小时内,一个人只传给两个人,一昼夜只有24小时,一个千万人口的大城市能传遍吗?只凭直觉,是很难正确判断的。
有理数指数幂知识点一、有理数指数幂的概念。
1. 正整数指数幂。
- 定义:对于a∈ R,n∈ N^*,a^n=⏟a× a×·s× a_n个a。
例如2^3 = 2×2×2 = 8。
2. 零指数幂。
- 规定:a^0 = 1(a≠0)。
这是因为当a≠0时,a^m÷ a^m=a^m - m=a^0,而a^m÷a^m = 1。
3. 负整数指数幂。
- 定义:a^-n=(1)/(a^n)(a≠0,n∈ N^*)。
例如2^-3=(1)/(2^3)=(1)/(8)。
4. 分数指数幂。
- 正分数指数幂:a^(m)/(n)=sqrt[n]{a^m}(a≥slant0,m,n∈ N^*,n > 1)。
例如4^(3)/(2)=√(4^3)=√(64) = 8。
- 负分数指数幂:a^-(m)/(n)=(1)/(a^frac{m){n}}=(1)/(sqrt[n]{a^m)}(a > 0,m,n∈N^*,n > 1)。
例如8^-(2)/(3)=(1)/(8^frac{2){3}}=(1)/(sqrt[3]{8^2)}=(1)/(4)。
二、有理数指数幂的运算性质。
1. 同底数幂相乘。
- a^m· a^n=a^m + n(a>0,m,n∈ Q)。
例如2^(1)/(2)×2^(1)/(3)=2^(1)/(2)+(1)/(3)=2^(3 + 2)/(6)=2^(5)/(6)。
2. 同底数幂相除。
- a^m÷ a^n=a^m - n(a>0,m,n∈ Q)。
例如3^(3)/(2)÷3^(1)/(2)=3^(3)/(2)-(1)/(2)=3^1 = 3。
3. 幂的乘方。
- (a^m)^n=a^mn(a>0,m,n∈ Q)。
例如(2^(2)/(3))^3=2^(2)/(3)×3=2^2 = 4。
4.1有理数指数幂(2)——实数指数幂【教学目标】知识目标:1、掌握实数指数幂的运算法则;2、通过几个常见的幂函数,了解幂函数的图像特点。
能力目标:1、正确进行实数指数幂的运算;2、培养学生的计算技能;3、通过对幂函数图形的作图与观察,培养学生的计算工具使用能力与观察能力。
【教学重点】实数指数幂的运算法则,有理数指数幂的运算。
【教学难点】有理数指数幂的运算。
【教学设计】1、在复习整数指数幂的运算中,学习实数指数幂的运算;2、通过学生的动手计算,巩固知识,培养计算技能;3、通过“描点法”作图认识幂函数的图像,通过利用软件的大量作图,总结图像规律;4、通过知识应用巩固有理数指数幂的概念。
【课时安排】2课时。
(90分钟)【教学过程】一、实数指数幂 1、复习导入整数指数幂,当*n ∈N 时,na = ; 规定当0a ≠时,0a = ; n a -= ; 分数指数幂:mna = ;0a ≠时,m na-= 。
其中*m n n ∈N 、且>1。
当n 为奇数时,a ∈R ;当n 为偶数时,0a。
例1、将下列各根式写成分数指数幂:(2.例2、将下列各分数指数幂写成根式:(1)3465-;(2)232.3()2、扩展:整数指数幂的运算法则为: (1) m n a a ⋅= ; (2) ()nm a= ;(3) ()nab = 。
其中()m n ∈Ζ、运算法则同样适用于有理数指数幂的情况3、概念当p 、q 为有理数时,有p q p q a a a +⋅=; ()qp pq a a =; ()pp p ab a b =⋅运算法则成立的条件是,出现的每个有理数指数幂都有意义。
说明:可以证明,当p 、q 为实数时,上述指数幂运算法则也成立。
4、典型例题例1、计算下列各式的值:(1)130.125; (2分析 (1)题中的底为小数,需要首先将其化为分数,有利于运算法则的利用;(2)题中,首先要把根式化成分数指数幂,然后再进行化简与计算。
4.1有理数指数幂
【教学目标】
知识与技能:
使学生理解有理数指数幂和根式的概念,并能正确运用有理数指数幂运算性质和根式的运算性质.
过程与方法:
通过本节课的学习,培养学生的观察、分析、归纳等逻辑思维能力和勇于发现、勇于探索、勇于创新的精神.
情感态度价值观:
启发学生独立思考,自主发现问题并解决问题,在整个学习过程中感知事物之间普遍联系的辩证唯物主义思想.
【教学重点】
理解有理数指数幂和根式的概念及其运算性质.
【教学难点】
运用有理数指数幂及根式的运算法则进行互化计算.
【教学备品】
教学课件.
【课时安排】
1课时.
【教学过程】。