元素性质的递变规律 第一电离能 电负性
- 格式:ppt
- 大小:3.02 MB
- 文档页数:56
反映元素性质的重要数据—电离能与电负性一、电离能电离能是指从气态原子中去掉电子把它变成气态阳离子,需要克服核电荷的引力而消耗的能量。
符号为I,单位常用电子伏特。
从元素的气态原子去掉一个电子成为+1价气态阳离子所需消耗的能量,称为第一电离能(I1);从+1价气态阳离子再去掉一个电子成为+2价气态阳离于所需消耗的能量,叫做第二电离能(I2);依此类推。
逐级电离能逐步升高。
用元素的I1可以衡量元素金属性的强弱。
I1越小,原子越容易失去电子,该元素的金属性越强。
例1、电离能是指1mol气态原子(或阳离子)失去1mol电子形成1mol气态阳离.子(或更高价气态阳离子)所需吸收的能量。
现有核电荷数小于20的元素A,其电离能数据如下(I1表示原子失去第一个电子的电离能,In表示原子失去第n个电子的电离能。
单位:eV)序号I1I2I3I4I5I6电离能7.64415.0380.12109.3141.2186.5序号I7I8I9I10I11┈电离能224.9266.0327.9367.41761┈(1)外层电子离核越远,能量越高,电离能____(填“大”或“小”)。
阳离子电荷数越高,再失去电子时,电离能越____(填“大”或“小”)。
(2)上述11电子分属几个电子层?(3)去掉11个电子后,该元素还有____个电子。
分析:相当一部分学生看不懂题意,反映出的问题是不会应用相对量进行分析,从表中可看出,电离能的绝对量是I1〈I2〈I3┅但在此更应关注相对量。
相邻两个电离能的相对量是:,,,┈而,从相对量的变化说明I1、I2两个电子的排布与I3到I10八个电子的排布不同,而I11电子的排布又是另一回事。
所以上述11个电子分属三个电子层,最外层有2个电子,次外层有8个电子,是镁元素。
本题的分析还可以启发教育我们的学生,科学家是如何认识电子在核外是分层排布的。
答案:(1)小;大(2)3 (3)1 (4)Mg(OH)2例2、不同元素的气态原子失去最外层一个电子所需要的能量(设其为E)如下图所示。
第二单元元素性质的递变规律【学海导航】元素的性质随着核电荷数的递增而呈现周期性的变化,这个规律叫做元素周期律。
一、原子核外电子排布的周期性元素按原子序数递增的顺序依次排列时,原子的最外层上的电子数,由1(s1)到8(s2p6),呈现出周期性变化。
相应于这种周期性变化,每周期以碱金属开始,以稀有气体结束。
元素的化学性质,主要取决于元素原子的电子结构,特别是最外层电子结构。
所以元素性质的周期性,来源于原子电子层结构的周期性。
根据元素原子的外围电子排布的特征,可将元素周期表分成五个区域:s区、p区、d 区、ds区、f区。
二、元素第一电离能的周期性变化1、定义:从气态的基态原子中移去一个电子变成+1价气态阳离子所需的最低能量,称为第Ⅰ电离能。
常用符号I1表示。
M(g)→ M+(g)+ e-,+1价气态阳离子移去一个电子变成+2价气态阳离子所需的最低能量,称为第Ⅱ电离能。
依次类推。
元素的第一电离能越小,表示它越容易失去电子,即该元素的金属性越强。
2、影响电离能的因素电离能的大小主要取决于原子的核电荷、原子半径及原子的电子构型。
一般说来,核电荷数越大,原子半径越小,电离能越大。
另外,电子构型越稳定,电离能也越大。
3. 电离能的周期性变化同周期中, 从左向右,核电荷数增大,原子半径减小, 核对电子的吸引增强, 愈来愈不易失去电子, 所以 I 总的趋势是逐渐增大。
但有些元素(如Be、Mg、N、P等)的电离能比相邻元素的电离能高些,这主要是这些元素的最外层电子构型达到了全充满或半充满的稳定构型。
同主族元素自上而下电离能依次减小。
但在同一副族中,自上而下电离能变化幅度不大,且不甚规则。
4.电离能与价态之间的关系失去电子后, 半径减小, 核对电子引力大, 更不易失去电子, 所以有: I1 < I2 < I3 < I4…., 即电离能逐级加大.三、元素电负性的周期性变化1、定义:电负性: 表示一个元素的原子在分子中吸引电子的能力. 元素的电负性越大,表示原子吸引成键电子的能力越强,该元素的非金属性也就越强;电负性越小,该元素的金属性越强。
元素性质的递变规律第一电离能电负性首先,第一电离能是指在气态下,一个原子失去一个电子形成正离子的过程中所需要吸收的能量。
它可以通过实验测量得到,通常用kJ/mol (千焦/摩尔)来表示。
元素的第一电离能与其原子核的核电荷数(即原子序数)有着密切的关系。
随着原子序数的增加,原子核的电荷数也增加,因此第一电离能也会增大。
这是因为原子核的电荷数和外层电子云的层数共同决定着外层电子与原子核之间的吸引力,当核电荷数增加时,外层电子对原子核的吸引力增强,需要对外层电子施加更大的能量才能脱离原子形成正离子。
在元素周期表中,第一电离能呈现出递减的趋势,这是由于原子核电荷数增加的速度相对较慢,而外层电子云的层数增加的速度相对较快。
换句话说,随着原子序数的增加,每个新的周期开始时,阶梯上的第一电离能会增加一些,但是随着周期的继续,电子层数的增加导致屏蔽效应的出现,电离能开始下降。
这一递变规律在周期表的左上角和右下角的元素上表现得特别明显。
其次,电负性是描述一个元素在化合物中吸引共价电子对的能力的指标。
电负性的测定主要基于化合物的极性和共价键的极性。
元素的电负性与其原子结构有关,通常来说,电负性随着原子序数的增加而增加。
这是因为随着原子序数的增加,原子核的电荷数也增加,原子对电子的吸引力变强,导致原子的电负性增加。
电负性还与元素的电子亲和能有关,电子亲和能是指原子捕获一个电子并形成负离子时所释放的能量。
除了原子序数的增加,元素的周期表分组位置也会对电负性产生影响。
通常来说,同一周期的元素,周期数越靠右,电负性越高;同一分组的元素,靠上的元素电负性越高。
总的来说,元素的第一电离能和电负性都是与元素的原子结构有关的重要性质。
它们的递变规律可以通过周期表来揭示。
了解这些规律有助于我们理解元素的性质,对元素的化学性质和反应有更深入的认识。