波函数的统计诠释
- 格式:ppt
- 大小:335.00 KB
- 文档页数:36
波函数的统计解释一.波动-粒子二重性矛盾的分析物质粒子既然是波,为什么长期把它看成经典粒子,没犯错误?实物粒子波长很短,一般宏观条件下,波动性不会表现出来。
到了原子世界(原子大小约1A),物质波的波长与原子尺寸可比,物质微粒的波动性就明显的表现出来。
传统对波粒二象性的理解:(1)物质波包物质波包会扩散,电子衍射,波包说夸大了波动性一面。
(2)大量电子分布于空间形成的疏密波。
电子双缝衍射表明,单个粒子也有波动性。
疏密波说夸大了粒子性一面。
对波粒二象性的辨正认识:微观粒子既是粒子,也是波,它是粒子和波动两重性矛盾的统一,这个波不再是经典概念下的波,粒子也不再是经典概念下的粒子。
在经典概念下,粒子和波很难统一到一个客体上。
二.波函数的统计解释1926年玻恩提出了几率波的概念: 在数学上,用一函数表示描写粒子的波,这个函数叫波函数。
波函数在空间中某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成正比。
既描写粒子的波叫几率波。
描写粒子波动性的几率波是一种统计结果,即许多电子同一实验或一个电子在多次相同实验中的统计结果。
几率波的概念将微观粒子的波动性和粒子性统一起来。
微观客体的粒子性反映微观客体具有质量,电荷等属性。
而微观客体的波动性,也只反映了波动性最本质的东西:波的叠加性(相干性)。
描述经典粒子:坐标、动量,其他力学量随之确定;描述微观粒子:波函数,各力学的可能值以一定几率出现。
设波函数描写粒子的状态,波的强度,则在时刻t、在坐标x 到x+dx、y到y+dy、z到z+dz的无穷小区域内找到粒子的几率表示为,应正比于体积和强度归一化条件:在整个空间找到粒子的几率为1。
归一化常数可由归一化条件确定重新定义波函数,叫归一化的波函数。
在时刻t、在坐标 (x,y,z)点附近单位体积内找到粒子的几率称为几率密度,用表示,则归一化的波函数还有一不确定的相因子;只有有限时才能归一化为1。
经典波和微观粒子几率波的区别:(1)经典波描述某物理量在空间分布的周期变化,而几率波描述微观粒子某力学量的几率分布;(2)经典波的波幅增大一倍,相应波动能量为原来四倍,就变成另一状态了;而微观粒子在空间出现的几率只决定于波函数在空间各点的相对强度,将几率波的波幅增大一倍并不影响粒子在空间各点出现的几率,即将波函数乘上一个常数,所描述的粒子的状态并不改变;(3)对经典波,加一相因子,状态会改变,而对几率波,加一相因子不会引起状态改变。
一、波函数的统计解释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。
如何从波函数得到微观粒子的信息是量子力学的一个主要内容。
波恩的统计解释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。
由于这个性质,波函数必须满足1. 是归一化的1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)2. 满足波函数的标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。
);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t ,坐标x 有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。
由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是dx x 2⎰ψ是你所得到结果的平均值。
而是相反:第一次测量(其结果是不确定的)将使波函数坍塌至位于实际获得的测量值处的一个尖峰,以后的测量(如果它们立即进行)将得到同样的结果。
.测量引起波函数的坍塌而x是所有测量都是对处在ψ态的粒子所进行的平均值,这意味着你要么发现某种方法使测量后粒子的状态回到ψ态,要么你准备一个系综,其中每个粒子都处在ψ态,然后测量每个粒子的位置, x是所有结果的平均值。
(你们可以想象在一个书架上放一行瓶子,每个瓶子中放一个处在ψ态(相对瓶子的中心)的粒子,每一个学生被分配拿一把尺子测量一个瓶子中粒子的位置,一声令下他们同时开始测量自己瓶子中粒子的位置。
计算平均值,它应该符合x。
简短而言,期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。
波函数的统计诠释的概念波函数的统计诠释是量子力学中描述微观粒子行为的一种理论解释。
波函数是量子力学中的基本概念,它可以描述粒子的位置、动量以及相应的概率分布。
波函数的统计诠释是指通过波函数的模的平方来描述粒子在不同位置的概率分布,而不是用经典物理学中的确定性描述。
在经典物理学中,我们可以用牛顿运动定律来描述物体的运动规律,而量子力学中的波函数则描述了微观粒子的运动规律。
波函数的统计诠释认为,粒子的物理状态在某一给定时刻是不确定的,而只能用概率来描述。
通常情况下,粒子的运动状态由波函数表示,波函数的平方的绝对值表示了粒子在不同位置上的概率。
波函数的统计诠释最早由德国物理学家马克斯·玻恩(Max Born)于1926年提出。
他通过研究波动方程和波函数的性质,得出了波函数的平方表示了测量粒子位置的概率密度。
根据这一理论,波函数的平方的绝对值越大,粒子在该位置出现的概率就越大。
这就解释了为什么在双缝干涉实验中,粒子在干涉条纹上的概率更大,而在暗区的概率很小。
波函数的统计诠释揭示了微观粒子行为的非经典性质。
在经典物理学中,粒子的位置和动量是可以同时确定的,而量子力学中却存在不确定原理的限制,即海森堡不确定性原理。
根据不确定性原理,我们无法完全确定粒子的位置和动量,只能得到它们的概率分布。
这就意味着,我们无法预测粒子在某一时刻的确切位置和动量,只能通过波函数的统计诠释来获得它们的概率分布。
波函数的统计诠释也带来了量子纠缠和量子隐形传态等奇特现象。
由于波函数的统计诠释,当两个或多个粒子处于量子纠缠态时,它们之间的相互作用会导致它们的状态处于相关的状态。
这就意味着,当我们测量其中一个粒子的状态时,另一个粒子的状态也会瞬间塌缩到与之相关的状态上。
这种现象违反了经典物理学中的因果关系,被称为“量子非局域性”。
波函数的统计诠释还揭示了量子测量的本质。
根据量子测量原理,当我们对粒子的某一物理量进行测量时,其波函数将塌缩到与测量结果相对应的本征态上。
波函数的统计解释波函数是量子力学中描述粒子状态的数学函数。
它包含了粒子的可能位置、动量等信息,但并不直接表示物理实体。
波函数的统计解释是指通过波函数计算出的统计规律,用来预测大量粒子的行为。
1.概率解释:波函数的模的平方表示在一些空间点找到粒子的概率。
例如,对于一维运动的粒子,在其中一时刻,波函数的模的平方在一些位置上的积分就给出了粒子在该位置出现的概率。
这一概率解释使得波函数的统计解释与经典物理中的概率概念有了相似之处。
2.叠加解释:波函数的叠加原理使得多个波函数之间可以相互叠加。
这意味着多个波函数所代表的可能状态同时存在,并以一定的概率进行叠加。
这种叠加解释可以用来解释干涉和衍射等现象,这些现象是波粒二象性的体现。
3.线性解释:波函数的时间演化可以通过薛定谔方程进行描述。
根据薛定谔方程,波函数的演化是线性的,即满足叠加率和线性性质。
这一线性解释意味着多个波函数之间可以相互干涉和叠加,形成新的波函数。
4.统计解释:波函数可以用来确定粒子的期望值和方差等统计量。
例如,位置算符对应的期望值可以表示粒子的平均位置,动量算符对应的期望值可以表示粒子的平均动量。
通过对波函数进行数学计算,可以得到这些统计量,并与实验结果进行比较。
5.状态解释:波函数可以表示粒子的状态,包括其位置、动量和自旋等特征。
通过对波函数进行适当的测量,可以得到特定的物理量。
测量过程会导致波函数的坍缩,从而使得粒子的状态变为测量得到的特定值。
这一解释与量子力学的测量原理密切相关。
需要注意的是,波函数的统计解释并不是完美的,它依赖于量子力学中的一些基本假设和数学工具。
例如,波函数的坍缩是一个不可逆的过程,且测量结果具有一定的不确定性。
波函数的统计解释只能给出概率分布等统计规律,而无法提供关于单个粒子行为的具体预测。
总而言之,波函数的统计解释通过描述波函数的数学属性,从而预测大量粒子的行为。
它包括概率解释、叠加解释、线性解释、统计解释和状态解释等多个方面,为我们理解量子力学中的粒子行为提供了重要的物理和数学工具。
专题1−波函数的统计诠释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。
如何从波函数得到微观粒子的信息是量子力学的一个主要内容。
波恩的统计诠释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。
由于波函数的诠释,物理上的波函数必须是归一化1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)由波函数的统计诠释,波函需要满足标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。
);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t,坐标x有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。
由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。
.测量引起波函数的坍塌存在两类完全不同的物理过程:“正常”类,波函数按薛定鄂方程“从容不迫”的演化,“测量”类,由于测量,波函数突然和不连续的坍塌。
对于坐标这个力学量,由波函数我们可以得出它的信息(几率密度、期待值),那么其他力学量呢? 力学量的期待值当粒子处于态),(t x ψ时,对于一个力学量,如果我们还想知道测量这个力学量可以得到那些特定值,得到某个特定值的几率是多少,那么该如何做?波函数的统计解释(广义统计解释)给出。
首先,我们需要知道这个力学量的本征函数。
,n n n F Φ=Φ∧λ ,...3,2,1=n 分立谱本征函数满足正交归一条件(分立谱)nm n mdx δ=ΦΦ⎰∞∞-*将体系的状态波函数ψ用算苻ˆF的本征函数nΦ展开nnncΦ=ψ∑则在ψ态中测量力学量ˆF得到结果为nλ的几率是2n c,在测量后波函数坍塌为nΦ。