第8章 控制系统的状态空间分析与综合
- 格式:doc
- 大小:2.33 MB
- 文档页数:24
第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。
经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。
随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。
1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。
它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。
(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。
(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。
本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。
8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。
一个反映系统内部变量x和输入变量u间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y与内部变量及输入变量间的关系,具有代数方程的形式。
外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。
8.1.2 状态空间描述常用的基本概念 1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。
第八章 线性系统的状态空间分析与综合习题及解答8-1 已知电枢控制的直流伺服电机的微分方程组及传递函数 b aaa a a E dtdi L i R U ++=+ dtd K E mbb θ= a m m i C M =dt d f dtd J M mm m m m θθ+=22 )()([)()(2m b m a a m m a m a ma m C K f R s R J f L s J L s C s U s ++++=Θ⑴设状态变量m m x θ=1,m x θ =2,θ =3x 及输出量m y θ=,试建立其动态方程; ⑵设状态变量m m a x x i x θθ ===321,,及 my θ=,试建立其动态方程。
解:(1)由题意可知: ⎪⎪⎩⎪⎪⎨⎧=======123121xy xx x x x m m mmθθθθ ,由已知 ⎪⎪⎩⎪⎪⎨⎧+===++=m m m m m a m mmb ba a a a a f J M i C M K E E i L i R U θθθ可推导出 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=++-+-===12333221x y U J L C x J L C K f R x J L R J L f x x x x x a ma mm a m b m a m a a m a m 由上式,可列动态方程如下=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+-+-m a a m m a m a m b m a J L R J f L J L C K f R 0100010⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x +⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡m a m J L C 00a U y =[]001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321x x x(2)由题意可知:,1a i x =mm m y x x θθθ===,,32 可推导出 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-=-====+--=+--==23133231111x y x J f x J C J f i J C x x x U L x L K x L R U L L K i L R i x m m m m m m m m a m m m m a aa b a a a a m a b a a a aθθθθθ可列动态方程如下[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321010x x x y由 ⎪⎩⎪⎨⎧===mm mx x x θθθ 321和 ⎪⎩⎪⎨⎧===mm a x x i x θθ 321得 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-======3133221x J f x J C J f i J C x x x x x m m m m m m m a m m m m m θθθθ由上式可得变换矩阵为 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-=m m mm J f J C T 010018-2 设系统微分方程为 u y y y y 66116=+++。
控制系统的状态空间分析与设计控制系统的状态空间分析与设计是现代控制理论的重要内容之一,它提供了一种描述和分析控制系统动态行为的数学模型。
状态空间方法是一种广泛应用于系统建模和控制设计的理论工具,其基本思想是通过描述系统内部状态的变化来揭示系统的特性。
一、状态空间模型的基本概念状态空间模型描述了系统在不同时间点的状态,包括系统的状态变量和输入输出关系。
在控制系统中,状态变量是指影响系统行为的内部变量,如电压、速度、位置等。
通过状态空间模型,可以将系统行为转化为线性代数方程组,从而进行分析和设计。
1. 状态方程控制系统的状态方程是描述系统状态演化的数学表达式。
一般形式的状态方程可以表示为:x(t) = Ax(t-1) + Bu(t)y(t) = Cx(t) + Du(t)其中,x(t)是系统在时刻t的状态向量,A是系统的状态转移矩阵,B是控制输入矩阵,u(t)是系统的控制输入,y(t)是系统的输出,C是输出矩阵,D是直接传递矩阵。
2. 状态空间矩阵状态空间矩阵包括系统的状态转移矩阵A、控制输入矩阵B、输出矩阵C和直接传递矩阵D。
通过这些矩阵,可以准确描述系统的状态变化与输入输出之间的关系。
3. 系统的可控性和可观性在状态空间分析中,可控性和可观性是评估系统控制性能和观测性能的重要指标。
可控性是指通过调节控制输入u(t),系统的状态可以在有限时间内从任意初始状态x(0)到达任意预期状态x(t)。
可控性可以通过系统的状态转移矩阵A和控制输入矩阵B来判定。
可观性是指通过系统的输出y(t)可以完全确定系统的状态。
可观性可以通过系统的状态转移矩阵A和输出矩阵C来判定。
二、状态空间分析方法状态空间分析方法包括了系统响应分析、系统稳定性分析和系统性能指标分析。
1. 系统响应分析系统的响应分析可以通过状态方程进行。
主要分析包括零输入响应和零状态响应。
零输入响应是指当控制输入u(t)为零时,系统的输出y(t)变化情况。
南京信息工程大学硕士研究生招生入学考试考试大纲
考试科目代码:817
考试科目名称:自动控制原理
第一部分大纲内容
一、课程目标
本课程为控制系统提供了数学模型的建立、性能分析和系统设计的基本方法。
要求考生掌握自动控制系统的基本理论知识和基本分析计算方法,强调基础性和综合性。
注重测试考生对相关的基本概念、理论和分析方法的理解,以及运用基本概念、基本原理,灵活分析和解决实际问题的能力。
二、基本要求
考试内容包括经典控制理论和现代控制理论。
要求理解、掌握:控制系统传递函数和信号流图等数学模型的建立;系统稳定性、动态性能、稳态性能的时域分析;根轨迹法;频域法;系统串联校正的设计方法;线性离散系统的分析;系统状态空间建模及其求解;系统可控性和可观测性;线性定常系统状态反馈及观测器设计;李雅普诺夫稳定性理论。
三、课程内容与考核目标
(1)自动控制的一般概念
1.掌握基本控制方式:开环、闭环(反馈)控制;
2.熟悉自动控制的性能要求:稳、快、准;
3.掌握反馈控制原理与动态过程的概念,以及建立原理方块图的方法。
(2)控制系统的数学模型
1.掌握动态方程建立及线性化方法;
2.熟练掌握结构图的等效变换方法;
3.掌握梅逊公式及应用;
4.熟悉典型环节。
(3)线性系统的时域分析法。
第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。
经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。
随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。
1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。
它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。
(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。
(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。
本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。
8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法图8-1 典型控制系统方块图典型控制系统如图8-1所示,由被控对象、传感器、执行器和控制器组成。
被控过程327328(见图8-2)具有若干输入端和输出端。
数学描述通常有两种基本方法:一种是输入、输出描述(外部描述),它将系统看成为“黑箱”,只是反映输入与输出间的关系,而不去表征系统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。
一个反映系统内部变量x 和输入变量u 间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y 与内部变量及输入变量间的关系,具有代数方程的形式。
外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。
第8章控制系统的状态空间分析与综合第1~7章涉及的内容属于经典控制理论的范畴,系统的数学模型是线性定常微分方程和传递函数,主要的分析与综合方法是时域法、根轨迹法和频域法。
经典控制理论通常用于单输入-单输出线性定常系统,其缺点是只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态,不能有效处理多输入-多输出系统、非线性系统、时变系统等复杂系统的控制问题。
随着科学技术的发展,对控制系统速度、精度、适应能力的要求越来越高,经典控制理论已不能满足要求。
1960年前后,在航天技术和计算机技术的推动下,现代控制理论开始发展,一个重要的标志就是美国学者卡尔曼引入了状态空间的概念。
它是以系统内部状态为基础进行分析与综合的控制理论,两个重要的内容如下。
(1)最优控制:在给定的限制条件和评价函数下,寻求使系统性能指标最优的控制规律。
(2)最优估计与滤波:在有随机干扰的情况下,根据测量数据对系统的状态进行最优估计。
本章讨论控制系统的状态空间分析与综合,它是现代控制理论的基础。
8.1 控制系统的状态空间描述8.1.1 系统数学描述的两种基本方法图8-1 典型控制系统方块图典型控制系统如图8-1所示,由被控对象、传感器、执行器和控制器组成。
被控过程(见图8-2)具有若干输入端和输出端。
数学描述通常有两种基本方法:一种是输入、输出描述(外部描述),它将系统看成为“黑箱”,只是反映输入与输出间的关系,而不去表征系统的内部结构和内部变量,如传递函数;另一种是状态空间描述(内部描述),它是基于系统内部结构的一种数学模型,由两个方程组成。
一个反映系统内部变量x 和输入变量u 间的关系,具有一阶微分方程组或一阶差分方程组的形式;另一个是表征系统输出向量y 与内部变量及输入变量间的关系,具有代数方程的形式。
外部描述虽能反映系统的外部特性,却不能反映系统内部的结构与运行过程,内部结构不同的两个系统也可能具有相同的外部特性,因此外部描述通常是不完整的;内部描述则能全面完整地反映出系统的动力学特征。
8.1.2 状态空间描述常用的基本概念1.输入和输出由外部施加到系统上的激励称为输入,若输入是按需要人为施加的,又称为控制;系统的被控量或从外部测量到的系统信息称为输出,若输出是由传感器测量得到的,又称为观测。
2.状态、状态变量和状态向量能完整描述和惟一确定系统时域行为或运行过程的一组独立(数目最小)的变量称为系统的状态,其中的各个变量称为状态变量。
当状态表示成以各状态变量为分量组成的向量时,称为状态向量。
系统的状态)(t x 由0t t =时的初始状态x (0t ) 及0t t ≥的输入)(t u 惟一确定。
对n 阶微分方程描述的系统,当n 个初始条件)(,),(),(0)1(00t x t xt x n -Λ&及0t t ≥的输入)(t u 给定时,可惟一确定方程的解,故)1(,,,-n x xx Λ&这n 个独立变量可选作状态变量。
状态对于确定系统的行为既是必要的,也是充分的。
n 阶系统状态变量所含独立变量的个数为n ,当变量个数小于n 时,便不能完全确定系统的状态,而当变量个数大于n 时,则存在多余的变量,这些多余的变量就不是独立变量。
判断变量是否独立的基本方法是看它们之间是否存在代数约束。
状态变量的选取并不惟一,一个系统通常有多种不同的选取方法。
但应尽量选取能测量的物理量或独立贮能元件的贮能变量作为状态变量,以便实现系统设计。
在机械系统中,常选取位移和速度作为变量;在R-L-C 网络中,常选电感电流和电容电压作为状态变量;在由传递函数绘制的方块图中,常取积分器的输出作为状态变量。
3.状态空间以状态向量的n 个分量作为坐标轴所组成的n 维空间称为状态空间。
4.状态轨迹系统在某个时刻的状态,可以看作是状态空间的一个点。
随着时间的推移,系统状态不断变化,便在状态空间中描绘出一条轨迹,该轨迹称为状态轨迹。
5.状态方程描述系统状态变量与输入变量之间关系的一阶向量微分方程或差分方程称为系统的状态方程,它不含输入的微积分项。
状态方程表征了系统由输入所引起的状态变化,一般情况下,状态方程既是非线性的,又是时变的,它可以表示为[]t t u t x f t x),(),()(=& (8-1) 6.输出方程描述系统输出变量与系统状态变量和输入变量之间函数关系的代数方程称为输出方程,当输出由传感器得到时,又称为观测方程。
输出方程的一般形式为[]t t u t x g t y ),(),()(= (8-2) 输出方程表征了系统状态和输入的变化所引起的系统输出变化。
7.动态方程状态方程与输出方程的组合称为动态方程,又称为状态空间表达式,其一般形式为[][]⎭⎬⎫==t t u t x g t y t t u t x f t x ),(),()(),(),()(& (8-3a )或离散形式[][]⎭⎬⎫==+k k k k k k k k t t u t x g t y t t u t x f t x ),(),()(),(),()(1 (8-3b )8.线性系统:线性系统的状态方程是一阶向量线性微分方程或差分方程,输出方程是向量代数方程。
线性连续时间系统动态方程的一般形式为⎭⎬⎫+=+=D(t)u(t)C(t)x(t)y(t))()()()()(t u t B t x t A t x & (8-4)设状态x 、输入u 、输出y 的维数分别为q p,n,,称n n ⨯矩阵A (t)为系统矩阵或状态矩阵,称p n ⨯矩阵()B t 为控制矩阵或输入矩阵,称n q ⨯矩阵C (t )为输出矩阵或观测矩阵,称p q ⨯矩阵D (t )为前馈矩阵或输入输出矩阵。
9.线性定常系统线性系统的A ,B ,C ,D 中的各元素全部是常数。
即⎭⎬⎫+=+=)t (Du )t (Cx )t (y )t (Bu )t (Ax )t (x & (8-5a )对应的离散形式为)()()()()()1(k Du k Cx k y k Hu k Gx k x +=+=+ (8-5b )⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x x M 21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=p u u u u M 21 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=q y y y y M 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a a a a a a A ΛM M M ΛΛ212222111211 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=np n n p p b b b b b b b b b B ΛM M M ΛΛ212222111211 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=qn q q n n c c c c c c c c c C ΛM M M ΛΛ212222111211 111212122212p p q q qp d d d d d d D d d d ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦LL M M M L 为书写方便,常把系统(8-5a)和系统(8-5b)分别简记为S(A,B,C,D )和S(G,H,C,D)。
10.线性系统的结构图线性系统的动态方程常用结构图表示。
图8-3为连续系统的结构图;图8-4为离散系统的结构图。
图中,I 为(n n ⨯)单位矩阵,s 是拉普拉斯算子,z 为单位延时算子。
图8-3线性连续时间系统结构图 图8-4 线性离散时间系统结构图由于状态变量的选取不是惟一的,因此状态方程、输出方程、动态方程也都不是惟一的。
但是,用独立变量所描述的系统的维数应该是惟一的,与状态变量的选取方法无关。
动态方程对于系统的描述是充分的和完整的,即系统中的任何一个变量均可用状态方程和输出方程来描述。
状态方程着眼于系统动态演变过程的描述,反映状态变量间的微积分约束;而输出方程则反映系统中变量之间的静态关系,着眼于建立系统中输出变量与状态变量间的代数约束,这也是非独立变量不能作为状态变量的原因之一。
动态方程描述的优点是便于采用向量、矩阵记号简化数学描述,便于在计算机上求解,便于考虑初始条件,便于了解系统内部状态的变化特征,便于应用现代设计方法实现最优控制和最优估计,适用于时变、非线性、连续、离散、随机、多变量等各类控制系统。
(a ) (b )图8-5 电路的独立变量例8-1 试确定图8-5中(a )、(b )所示电路的独立状态变量。
图中u 、i 分别是输入电压和输入电流,y 为输出电压,i x ,i=1,2,3,为电容器电压或电感器电流。
解 并非所有电路中的电容器电压和电感器电流都是独立变量。
对图8-5(a )所示电路,不失一般性,假定电容器初始电压值均为0,有13232x c c c x +=13223x c c c x +=因此,只有一个变量是独立的,状态变量只能选其中一个,即用其中的任意一个变量作为状态变量便可以确定该电路的行为。
实际上,三个串并联的电容可以等效为一个电容。
对图8-5(b )所示电路,x 1 = x 2,因此两者相关,电路只有两个变量是独立的,即(x 1和x 3)或(x 2和x 3),可以任用其中一组变量如(x 2,x 3)作为状态变量。
8.1.3 系统的传递函数矩阵设初始条件为零,对线性定常系统的动态方程进行拉氏变换,可以得到11()()()()[()]()X s sI A BU s Y s C sI A B D U s --=-=-+ (8-6)系统的传递函数矩阵(简称传递矩阵)定义为D B A sI C s G +-=-1)()( (8-7) 例8-2 已知系统动态方程为⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡2121212121100110012010x x y y u u x x x x &&试求系统的传递函数矩阵。
解 已知 011010,,,0020101A B C D ⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦故⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+-=---210)2(11201)(11s s s s s s A sIC s G =)(⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++⎥⎦⎤⎢⎣⎡=--210)2(111001210)2(111001)(1s s s ss s s s B A sI8.1.4 线性定常系统动态方程的建立1.根据系统物理模型建立动态方程例8-3 试列写如图8-6所示的R-L-C 电路方程,选择几组状态变量并建立相应的动态方程,并就所选状态变量间的关系进行讨论。
图8-6 R-L-C 电路解 有明确物理意义的常用变量主要有:电流、电阻器电压、电容器的电压与电荷、电感器的电压与磁通。