第九章 线性系统的状态空间分析法
- 格式:ppt
- 大小:1.47 MB
- 文档页数:178
第九章 线性系统的状态空间分析与综合在第一章至第七章中,我们曾详细讲解了经典线性系统理论以及用其设计控制系统的方法。
可以看到,经典线性理论的数学基础是拉普拉斯变换和z 变换,系统的基本数学模型是线性定常高阶微分方程、线性常系数差分方程、传递函数和脉冲传递函数,主要的分析和综合方法是时域法、根轨迹法和频域法,分析的主要内容是系统运动的稳定性。
经典线性系统理论对于单输入-单输出线性定常系统的分析和综合是比较有效的,但其显著的缺点是只能揭示输入-输出间的外部特性,难以揭示系统内部的结构特性,也难以有效处理多输入-多输出系统。
在50年代蓬勃兴起的航天技术的推动下,在1960年前后开始了从经典控制理论到现代控制理论的过渡,其中一个重要标志就是卡尔曼系统地将状态空间概念引入到控制理论中来。
现代控制理论正是在引入状态和状态空间概念的基础上发展起来的。
在现代控制理论的发展中,线性系统理论首先得到研究和发展,已形成较为完整成熟的理论。
现代控制理论中的许多分支,如最优控制、最优估计与滤波、系统辨识、随机控制、自适应控制等,均以线性系统理论为基础;非线性系统理论、大系统理论等,也都不同程度地受到了线性系统理论的概念、方法和结果的影响和推动。
现代控制理论中的线性系统理论运用状态空间法描述输入-状态-输出诸变量间的因果关系,不但反映了系统的输入—输出外部特性,而且揭示了系统内部的结构特性,是一种既适用于单输入--单输出系统又适用于多输入—多输出系统,既可用于线性定常系统又可用于线性时变系统的有效分析和综合方法。
在线性系统理论中,根据所采用的数学工具及系统描述方法的不同,又出现了一些平行的分支,目前主要有线性系统的状态空间法、线性系统的几何理论、线性系统的代数理论、线性系统的多变量频域方法等。
由于状态空间法是线性系统理论中最重要和影响最广的分支,加之受篇幅限制,所以本章只介绍线性系统的状态空间法。
9-1 线性系统的状态空间描述1. 系统数学描述的两种基本类型这里所谓的系统是指由一些相互制约的部分构成的整体,它可能是一个由反馈闭合的整体,也可能是某一控制装置或受控对象。
第9章 线性系统的状态空间分析与综合重点与难点一、基本概念1.线性系统的状态空间描述(1)状态空间概念状态 反映系统运动状况,并可用以确定系统未来行为的信息集合。
状态变量 确定系统状态的一组独立(数目最少)变量,它对于确定系统的运动状态是必需的,也是充分的。
状态向量 以状态变量为元素构成的向量。
状态空间 以状态变量为坐标所张成的空间。
系统某时刻的状态可用状态空间上的点来表示。
状态方程 状态变量的一阶导数与状态变量、输入变量之间的数学关系,一般是关于系统的一阶微分(或差分)方程组。
输出方程 输出变量与状态变量、输入变量之间的数学关系。
状态方程与输出方程合称为状态空间描述或状态空间表达式。
线性定常系统状态空间表达式一般用矩阵形式表示:⎩⎨⎧+=+=DuCx y Bu Ax x (9.1) (2)状态空间表达式的建立。
系统状态空间表达式可以由系统微分方程、结构图、传递函数等其他形式的数学模型导出。
(3)状态空间表达式的线性变换及规范化。
描述某一系统的状态变量个数(维数)是确定的,但状态变量的选择并不唯一。
某一状态向量经任意满秩线性变换后,仍可作为状态向量来描述系统。
状态变量选择不同,状态空间表达式形式也不一样。
利用线性变换的目的在于使系统矩阵A 规范化,以便于揭示系统特性,利于分析计算。
满秩线性变换不改变系统的固有特性。
根据矩阵A 的特征根及相应的独立特征向量情况,可将矩阵A 化为三种规范形式:对角形、约当形和模式矩阵。
(4)线性定常系统状态方程解。
状态转移矩阵)(t φ(即矩阵指数Ate )及其性质:(9.8)i . I =)0(φii .A t t A t )()()(φφφ== iii. )()()()()(122121t t t t t t φφφφφ±=±=+iv. )()(1t t -=-φφv. )()]([kt t k φφ=vi. )( ])exp[()exp()exp(BA AB t B A Bt At =+= vii. )( )ex p()ex p(11非奇异P P At PAPt P --= 求状态转移矩阵)(t φ的常用方法:拉氏变换法 =)(t φL -1])[(1--A sI (9.2)级数展开法+++++=k k At t A k t A At I e !12122 (9.3) 齐次状态方程求解 )0()()(x t t x φ= (9.4)非齐次状态方程式(9.1)求解⎰-+=tBu t x t t x 0d )()()0()()(τττφφ (9.5) (5)传递函数矩阵及其实现传递函数矩阵)(s G :输出向量拉氏变换式与输入向量拉氏变换式之间的传递关系D B A sI C s G +-=-1)()( (9.6)传递函数矩阵的实现:已知传递函数矩阵)(s G ,找一个系统},,,{D C B A 使式(9.6)成立,则将系统},,,{D C B A 称为)(s G 的一个实现。
第九章线性系统的状态空间分析法一、教学目的和要求通过学习,了解系统状态空间描述常用的基本概念,掌握线性定常系统状态空间表达式的建立方法。
二、重点状态空间分析的常用概念,根据系统机理建立状态空间表达式方法。
三、教学内容:以“经典控制的不足”为切入点引进线性系统的状态空间分析与综合。
1、系统数学描述的两种基本方法一种是外部描述。
一种是内部描述。
对比举例2、系统描述中常用的基本概念输入和输出、松弛性、因果性、线性、时不变形3、系统状态空间描述常用的基本概念状态和状态变量、状态向量、状态空间、状态轨迹、状态方程、输出方程、状态空间表达式、自制系统、线性系统、线性系统的状态空间表达式、线性定常系统、线性系统的结构图、状态空间分析法。
将概念讲解、举例、对比来加深理解。
4、举例熟悉对概念理解5、根据系统机理建立状态空间表达式方法步骤:①确定输入输出向量;②根据系统机理(电学、力学等)建立系统方程;③选择状态变量,根据方程建立状态方程;④列写输出方程;⑤将状态方程、输出方程变换为向量—矩阵形式。
举例:RLC网络(单输入-单输出);机械位移系统(双输入-三输出)第一节 线性系统的状态空间描述一、教学目的和要求掌握线性定常系统状态空间表达式的建立方法。
二、重点由传递函数建立状态空间表达式 三、教学内容:1、由系统微分方程建立状态空间表达式方法(单输入-单输出) (1)系统输入量中不含倒数项。
()(1)(2)12100...n n n n n y a y a y a y a y uβ∙----+++++=式中y ,u 分别为系统的输出、输入量;0110,,...,,n a a a β-是由系统特性确定的常数。
由于给定n 个初值1(0),(0),...(0)yn y y - 及t ≧0的u (t )时,可唯一确定t>0时系统得的行为,可选取n 个状态变量为(1),,...,12n x y x y x y n -===,故上式可化为12231 (011210)x xx xxx nn x a x a x a x un n n y xβ∙∙∙∙∙∙∙===-=----+-=再将上式写成向量-矩阵形式,并画出状态变量图。