三坐标测量分度圆孔组位置度的方法及计算分析
- 格式:doc
- 大小:23.50 KB
- 文档页数:3
三坐标测量位置度的方法及注意事项作者:申学利杨丽云来源:《中小企业管理与科技·上旬刊》2015年第08期摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。
所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。
在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。
位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。
关键词:三坐标;位置度1 位置度的三坐标测量方法1.1 计算被测要素的理论位置①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。
②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。
1.2 根据零部件建立合适的坐标系。
在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。
1.3 测量被测元素和基准元素。
在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。
1.4 位置度的评价。
①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。
②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。
③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。
④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。
如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。
1.5 在报告文本中刷新就可以看到所评价的位置度结果。
2 三坐标测量位置度的注意事项2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。
孔组作为基准的三坐标测量机测量方法Coordinate measuring machine evaluation methodologyfor Hole Pattern Identified as Datum张爽高金刚王华ZHANG Shuang, GAO Jin-gang, WANG Hua(长春工程学院,长春 130012)摘要:由于实际孔组与基准参考框之间允许存在一定的位移,当孔组做为基准时位置度很难定量的进行测量。
以凸轮轴罩盖为例,首先介绍三坐标测量机软件关于孔组位置平移与旋转的数学定义。
其次,定量评价基准为孔组的位置度与传统基准建立方法比较。
从位置度曲线表中可以得出结论,孔组作为基准的曲线比传统方法的曲线平滑。
这种方法可以减少孔组位置度的偏差,从而对孔组类零件做出更符合功能或装配实际要求的判断。
关键词:孔组;基准;位置度;三坐标测量机中图分类号:TP202+.30 引言形位公差是用来规定零件尺寸和公差的操作标准。
形位公差的目的是保证零件与其配合件顺利安装并给出零件的几何形状从而体现设计意图。
根据零件的功能,很多情况都需要将孔组定义为一个单一的基准。
尤其是两个零件都有螺栓孔需要使用螺栓与螺母联接的结构。
通常,图纸上建立基准的传统的方法是以零件的安装平面为第一基准,一个孔作为第二基准,再选取另外一个孔作为第三基准。
这种方法可能会将可以安装的零件的误判为不合格。
因为根据零件的设计功能,孔组与基准参考框之间允许存在一定的位移,如图2所示。
在实际的装配过程中,孔组允许移动,这是应用孔组作为基准的目的。
然而,不同于传统的基准建立方法,孔组作为基准在实际应用中很长采用,其中主要的一个原因就是测量上很困难。
在本文中,采用凸轮轴罩盖为例,介绍了三坐标测量机以孔组为基准测量孔的位置度的方法。
传统的基准建立方法与孔组基准方法得到的孔位置度以图表的方法做对比分析。
详细的结果见下面的章节分析。
1 凸轮轴罩盖的孔位置度测量在本文中,凸轮轴罩盖的孔位置度作为研究对象,使用三坐标测量机,介绍以孔组作为基准的操作方法。
三坐标位置度计算公式三坐标位置度计算是指计算目标点在三维坐标系中的位置,并在此基础上进行误差量的计算。
它在制造业、机器人技术、航空航天等领域中都有广泛应用。
此处介绍三坐标位置度计算的公式,以及如何在实际应用中进行调整和校准。
三坐标位置度计算公式中,需要考虑的是目标点在三个坐标轴(x、y、z)上的坐标值。
以二维坐标系为例,我们可以简单地使用勾股定理来计算两个坐标点之间的距离,即(sqrt((x2 - x1)^2 + (y2 -y1)^2))。
但在三维空间中,我们需要考虑三个坐标轴的影响,因此公式变为:(sqrt((x2 - x1)^2 + (y2 - y1)^2 + (z2 - z1)^2))。
此公式可以表示出两个点在三维空间中的距离,进而计算出它们之间的位置差异量。
在实际的三坐标位置度测量中,还需要考虑误差的影响。
误差包括系统误差和环境误差两种。
系统误差是指由于测量设备的精度、测量方法的限制,导致的固有误差;而环境误差则是由于测量条件的变化而产生的误差。
为了减少误差,我们需要在测量前对设备进行校准,确保其精度和稳定性。
三坐标位置度计算还需要考虑三坐标的坐标系之间的转换。
如果三个坐标轴不是互相垂直的,则需要进行坐标系变换。
在实际应用中,需要根据测量设备的特点和测量需求,合理选取坐标系,并进行合适的变换。
综合来看,三坐标位置度计算公式涉及到距离计算、误差分析、坐标系变换等多个方面。
在实际操作过程中,需要根据具体需求和设备特点进行合理的调整和校准,以保证精度和可靠性。
对于制造业和机器人技术等领域的从业人员而言,熟练掌握三坐标位置度计算公式是必不可少的基本技能之一。
三坐标测量孔距的方法-概述说明以及解释1.引言1.1 概述概述:三坐标测量是一种精密测量技术,通过三坐标测量仪器可以实现对物体形状、尺寸、孔距等多种要素的测量。
孔距是指两个孔之间的距离,是工程设计和生产制造中常见的重要参数之一。
本文将探讨三坐标测量技术在测量孔距方面的方法和应用。
首先介绍三坐标测量技术的原理和特点,然后深入探讨不同的孔距测量方法及其优缺点,最后通过实际应用案例分析,总结该技术在孔距测量中的实际效果和应用价值。
通过本文的阐述,读者将深入了解三坐标测量在孔距测量中的重要性和实用性,为相关领域的工程技术人员提供参考与借鉴。
1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,会先对三坐标测量孔距的方法进行简要介绍和目的阐述。
接着在正文部分,分为三个小节:一是对三坐标测量技术进行简要介绍,以便读者对三坐标测量有一个全面的了解;二是对孔距测量方法进行探讨,包括不同的测量方法及其优缺点比较;三是通过实际应用案例分析,展示三坐标测量孔距方法在实际工程中的应用情况。
最后,在结论部分将对整篇文章进行总结,对不同孔距测量方法进行优劣比较,并对未来研究方向进行展望。
通过以上结构的安排,读者可以系统地了解三坐标测量孔距的方法的相关知识。
1.3 目的本文旨在探讨利用三坐标测量技术来测量孔距的方法。
通过对孔距测量方法的研究和实际应用案例分析,我们旨在总结出一种准确、高效的测量方法,并对其优劣进行比较。
同时,我们希望能够在实践中发现问题并提出未来研究方向,为这一领域的发展和提升提供有益的参考。
通过本文的研究,我们希望能够为工程领域的孔距测量提供更加有效的解决方案,促进相关技术的进步和应用。
2.正文2.1 三坐标测量技术简介三坐标测量技术是一种精密实时测量技术,通过测量目标物体上各个点的三维坐标来实现对目标物体尺寸、形状等参数的准确检测。
该技术利用三个直角坐标轴上的测量探头,可以实现对物体空间内的任意点坐标的测量。
蔡司三坐标阵列孔位置度的测量涉及到对多个孔的位置度进行测量。
这些孔可能是相对基准进行公差的,也可能是在不同的方向上受到限制的。
具体测量方式如下:
1. 常规方法:配置小测针,测针直径小于孔径,测针进入孔内进行触测测量圆或圆柱进行评价。
2. 针规辅助测量:运行程序前在小孔插入匹配合适的针规,用常规测针测量针规外露的圆柱部分,再用此测量圆柱与孔口和孔底两处虚构横截平面分别相交构造成点或圆,分别评价两点或圆的位置度,两结果中取最大值为该小孔的位置度。
3. 自定心测量法:用大于孔径1.5倍以上直径的测针在小孔口部中心测量自定心点,评价该自定心点的位置度即为小孔的位置度。
此方法的优点是减少了小直径测针、吸盘、库位等部件的投入,无需使用针规,无额外操作,程序运行测量时间短,测量效率极高。
缺点是自定心点测量的是孔口倒角的中心,跟小孔的真实中心有一定的误差,故此方法整体测量误差相对较大,精度相对较低。
自定心测量法适用于位置度或尺寸要求不高的短小孔的测量,如压铸件的通油孔,一般来说小孔位置度要求在0.5以上均可使用此简易测量法。
以上内容仅供参考,如需更多信息,建议查阅蔡司三坐标的使用说明或咨询相关专业人士。
基于三坐标测量分度圆孔组位置度方法应用分析摘要:在加工零件过程中,有许多按某一特征分布的加工孔组,这些孔的特点是:各孔之间的相互位置要求较高 , 如要求均匀分布、等距分布或按理论正确尺寸确定的理想位置分布。
本文主要针对用三坐标测量分度圆孔组位置度的方法进行了详细的分析,为机床的调整和加工提供可靠依据。
关键字:三坐标测量、位置度、分度圆孔组在加工零件过程中,有许多按某一特征分布的加工孔组,这些孔的特点是:各孔之间的相互位置要求较高 , 如要求均匀分布、等距分布或按理论正确尺寸确定的理想位置分布。
评定这些位置度的常规方法是:1. 坐标测量法:利用心轴、通用量具、量仪进行测量。
这是较为传统的检测方法,优点是可以利用常用的量具、量仪进行检测,缺点是测量和计算过程复杂,耗时长,效率低,不适用于批量零件的检测,且检测精度完全依赖于检测工具的精度和检验人员的技术水平;2.专用位置度量规;是一种定性的评价位置度是否合格的传统方法。
它的优点是使用简便和有效,缺点是:制作周期长、效率低,成本过高,不适用于小批量零件的检测。
3.使用三坐标测量机进行测量和评价。
将被测零件放入测量机允许的测量空间,精确的测出被测零件表面的点在空间坐标中的数值,将这些点的坐标数值经过计算机处理,拟合形成测量元素(点、线面、圆、圆柱等),在经过数学计算的方法得到位置公差及其它几何量数据,它快捷、便利且精度高,适用于小、中、大批量零件的检测。
因此,在生产中得到了广泛的应用。
本文将对三坐标测量分度圆孔组位置度方法进行详细分析,为机床的调整和加工提供了可靠依据。
1.被测要素分析图1 端盖端盖(图1)多用于齿轮箱、蜗轮箱和减速器箱体,防止灰尘、油污侵入运动部位,为分度圆孔组位置度检测的典型零件。
径向尺寸选用中心线作为A基准,长度基准以连接面B为主。
由于本文只针对用三坐标测量该零件的位置度的方法进行分析,因此其他尺寸的测量不在此分析。
位置度是用以控制被测要素的位置要求 , 是零件上被测的点、线、面的实际位置偏离理想位置的程度 , 理想位置由设计者根据零件的功能要求给出 , 用带框的理想正确尺寸来表示。
三坐标测量位置度的方法及注意事项三坐标测量位置度的方法及注意事项摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。
所谓"位置度";是指对被评价要素的实际位置对理想位置变动量的指标进行限制。
在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。
位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。
关键词:三坐标;位置度;方法一、位置度的三坐标测量方法1.1 计算被测要素的理论位置①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。
②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。
1.2 根据零部件建立合适的坐标系。
在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。
1.3 测量被测元素和基准元素。
在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。
1.4 位置度的评价。
①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。
②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。
③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。
④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。
如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。
1.5 在报告文本中刷新就可以看到所评价的位置度结果。
二、三坐标测量位置度的注意事项2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。
三坐标测量位置度的方法及注意事项摘要:在汽车制造业中,对于每一个零部件都有着严格的质量要求。
为了满足装配性,很多零件都会在表面布满孔系,且这些孔系之间的位置尺寸以及位置度都是要严格符合标准。
因此对零部件进行位置度检测是十分必要的。
为了方便测量,在零部件的加工工序上编辑三坐标自动测量程序,提高了孔系位置的精度,也为各部门对于零部件生产的质量监控和设备调整提供了便利。
关键词:三坐标测量;位置度;方法;注意事项三坐标测量机是近40年发展起来的,它可以用来测量铸件、模具以及机械产品所生产加工出来的零部件等。
三坐标测量机的测量精度很高,效率很快,应用范围很广,无论是汽车、航空航天还是船舶等,所涉及的零部件,均有三坐标测量机工作的影子。
随着各机械行业的不断发展,对于零部件或模具的精度要求越来越高,对三坐标测量机精度需求的力度也越来越大。
1.三坐标测量机的结构和特点目前三坐标测量机的结构分为桥式结构和水平臂结构,桥式结构又分为固定和移动两种。
单边或者双边的高架桥结构,又称为龙门结构,这种大型的三坐标测量机将移动部分的结构进行了改进,通过只移动横梁来改进性能,以适应更大尺寸的测量。
①固定桥式结构三坐标测量机其封闭的框架结构有很强的刚性,且测量空间开阔,良好的稳定性能保证测量的精度。
固定桥式结构的三坐标测量机多被应用于测量轻重量的材料,体积较大,是一种精密型的测量机。
②移动桥式结构三坐标测量机与固定桥式结构测量机一样,测量空间也是较为开阔的,结构简单、工作台固定,与固定桥式结构测量机相比,承载能力要强,但三个方向运动相重叠,获取到的数据准确度就会较差,需要采取更多的措施来提高精度。
③水平臂结构三坐标测量机又被叫做“地轨式坐标测量机”,这种测量机结构简单,空间开阔,多被用于大型低精度物件的测量工作。
2.三坐标测量机的原理和方法三坐标测量机的工作原理是通过对零件进行坐标测量,将零件位置度的测量数据输入到三坐标测量机,再通过计算来获取其被测部件的尺寸大小、位置以及理论形状是否存在偏差,根据偏差情况来确定被测的零部件是否合格。
三坐标测量孔系位置度方法的实践摘要:现阶段,随着社会的发展,科学技术的发展也越来越迅速。
三坐标测量机(Coordinate Measuring Machining,简称 CMM) 20世纪 60 年代发展起来的一种新型高效的精密测量仪器。
目前,CMM已广泛用于机械制造业、汽车工业、电子工业、航空航天工业和国防工业等各部门,成为现代工业检测和质量控制不可缺少的万能测量设备。
随着科技的发展,三坐标测量机对测量精度的要求越来越高。
笔者根据多年工作经验,对影响三坐标测量机测量精度的因素与对策进行探讨。
关键词:三坐标测量;孔系位置度方法;实践引言随着我国工程测量行业的快速发展,各大高校纷纷开展“互换性与测量技术专业”,但是在开展三坐标测量机综合性实验教学的过程中,由于对实验的规范操作步骤以及实施考核细节并不完善,所以导致教学的效果不理想,为此必须要基于三坐标测量机的综合性实验设计与实践进行全面提升,提高学生对于测量理论三坐标测量机的深刻领悟。
同时针对高校服务社会的职能下,实现三坐标机多功能,从而服务社会。
关键词:三坐标测量机;综合性试验设计;多功能三坐标测量机作为最重要的测量机械设备,具有通用性强、自动化水平、高精度准确的特点。
通过对于在机械工程专业实验教学环节的三坐标测量机综合性实验改进,能够形成综合性、创新性为主体的实验教学,促进广大学生的学习和实践水平全面提升,并且也能够让学生更加积极主动的适应社会实践发展的需求。
一、三坐标测量机综合性实验的设计综合性实验涉及到许多的学科和三坐标测量机,通过对于综合性实验内容进行分析,可以有效的培养学生观察能力、思维能力。
1影响三坐标测量机测量精度的因素1.1机房环境的温度与湿度影响三坐标测量机测量精度的因素很多,其中最重要的因素就是温度问题。
每年进行一次的精度校正,并不能保证在温度变化的情况下测量机都能测量准确。
尤其是当季节变化时,机房的温度已与校验时不同。
当温度偏离太大时会对测量精度造成很大影响。
位置度功能:用于控制被测要素(点、线、面)对基准的位置误差。
根据零件的功能要求,位置度公差分为给定一个方向、给定两个方向、任意方向三种。
分类:按照被测要素的性质(点、直线、平面)位置度可分为三种情况:点的位置度、线的位置度、面的位置度。
点的位置度:其公差带为圆心位于理论正确位置的圆内的区域或球心位于理论正确位置的球面内的区域。
操作步骤:计算绝对位置度1.根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向建立坐标系,使该坐标系的某两轴方向平行于理论正确尺寸的方向,基准点为原点并保存。
2.根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面(XY 平面、XZ平面、YZ平面)。
3.然后点击位置公差工具条中的位置度图标按钮。
4.弹出界面后去掉基准元素前的勾后显示如(图2)。
(图2)5.如果被测元素结果是XYZ显示,选择被测元素后,理论尺寸显示XYZ并将结果名义值读入到理论尺寸中,投影面自动变为空间如(图3),如果理论尺寸不对可进行修改。
设置名称、公差、输出、公差规则。
(图3)6.如果被测元素结果是极坐标显示,选择被测元素后,理论尺寸按结果极坐标显示并将结果名义值读入到理论尺寸中,投影面自动变为结果所在投影面如(图4),如果理论尺寸不对可进行修改。
设置名称、公差、输出、公差规则。
(图4)说明:(1)需要进行直角坐标系或极坐标系评定位置度,在测量时就在对应的坐标系下进行测量。
(2)直角坐标系下的结果,拖入位置度界面,投影面自动为空间,显示XYZ可用;选择XY投影面,XY可用;选择XZ投影面,XZ可用;选择YZ投影面,YZ可用。
(3) 极坐标系XY投影面的结果RAH,拖入位置度界面,投影面自动为XY,显示RA可用;选择XZ投影面,名义值自动转换为RHA,RA可用;选择YZ投影面,名义值自动转换为HRA,RA可用;选择空间,名义值自动转换为XYZ,XYZ可用。
(4)极坐标系XZ投影面的结果RHA,拖入位置度界面,投影面自动为XZ,显示RA可用;选择XY投影面,名义值自动转换为RAH,RA可用;选择YZ投影面,名义值自动转换为HRA,RA可用;选择空间,名义值自动转换为XYZ,XYZ可用。
三坐标位置度测量方法概述三坐标测量是一种常用的工业测量技术,用于测量物体的尺寸和位置。
在工业生产中,精确的位置度测量对于保证产品质量和生产效率非常重要。
本文将介绍三坐标位置度测量的基本原理、常用方法和注意事项。
一、基本原理三坐标位置度测量是基于三维坐标系的测量方法,它通过测量物体在三个方向的坐标值以及物体表面与三坐标系关系的旋转角度,来确定物体在空间中的位置和形状。
三坐标位置度测量通常使用三坐标测量机完成,该设备可以通过机械式触发或光学式扫描等方式获取物体的三维坐标值。
二、常用方法1. 手动探针法手动探针法是最简单、常见的三坐标位置度测量方法之一。
操作员通过手动控制测量机上的探针,触碰物体表面并记录坐标值。
这种方法在小批量生产和检验领域较为常见,但由于受到操作员技术和主观因素的影响,其测量精度较低,适用于粗略测量。
2. 自动探针法自动探针法是相对于手动探针法而言的一种改进方法。
自动探针法使用程序化控制系统控制测量机,实现自动测量过程。
该方法通过事先编写好的测量程序,机器按照设定的路径和步骤进行测量,以提高测量的重复性和准确性。
3. 视觉测量法视觉测量法是利用相机和图像处理技术进行测量的方法。
通过采集物体的图像,利用图像处理算法来提取特征点和测量参数,并通过三维坐标转换计算物体的位置和形状。
相比于探针法,视觉测量法具有非接触、高效率和高精度等优势,适用于大批量生产中的精密测量。
4. 激光测量法激光测量法是通过激光测量仪器对物体进行测量的方法。
激光测量仪器将激光束投射到物体表面,通过测量激光束的反射或散射来获取物体表面的坐标值。
激光测量法具有非接触、高速度和高精度等优势,特别适用于复杂曲面的测量。
三、注意事项1. 设定合适的测量坐标系在进行三坐标位置度测量前,应根据具体测量任务设定合适的测量坐标系。
坐标系的设定应考虑到目标物体的形状、尺寸和特征,以及后续数据处理和分析的需求。
2. 选择合适的测量方法根据实际情况选择合适的测量方法。
三坐标测量机是一种效率很高的仪器,用它来测量圆度也具有很高的精度,尤其在批量测量的时候更能显示出它的优点,而且,用三坐标来测量圆度,工件不需要调平和调中心,能节省不少时间,同时也减少了这两项误差来源,使测量误差仅限于测量机本身的误差和表面粗糙度的影响,减化了误差模型。
三坐标测量机测量圆度的方法主要有:
1.单点测量
采用单点触测方式由于得到的是一些离散的点,所以采用二乘法进行计算和评价。
采用二乘法进行计算时,采样点一般为偶数,且平均分布。
在用单点法进行圆度测量时,采样点数不能太少,否则反应不了圆度的真实情况,一般要达到16 点以后即可反映被测圆的基本轮廓形状,如果为了掌握更严密的形状,可适当增加测量点数,如24,32 等。
采样时一般采用自动测量,因为手动采样不便控制矢量方向。
单点触测方式的特点是测量效率高,对测球的磨损小。
2.扫描测量
如果要掌握完整的形状,可以采用扫描方式,采用扫描方式时,得到的是完整的轮廓,采用包容区域法进行评定。
扫描方式的特点是效率稍低一些,但可以对零件轮廓进行详细分析。
两种方法都能对圆度作出准确的测量,可以根据实际要求选用。
实测结果表明,不论是单点测量还是扫描测量,测量机都可以得到过与圆度仪十分接近的结果,说明三坐标测量机测量圆度具有很高的精度。
但是,由于三坐标测量机一般都采用球形测头,球形测头对脏物比较敏感,容易造成虚假测量,而圆度仪采用的是斧形测头,能够穿过脏物,因此脏物对它的影响较小。
所以使用三坐标测量机时要注意对工件的清洁。
三坐标测量分度圆孔组位置度的方法及计算分析
位置度是多种形状和位置公差中的一种。
国家标准规定,位置度误差是被测实际要素对其想要素的变动量。
即理想要素是对于基准的位置由理论正确尺寸来决定的。
本文通过三坐标测量机对特殊位置度的测量,就分度圆位置度的计算方法进行了详细的分析。
标签:分度圆;位置度;理论正确尺寸
1 概述
三坐标已被广泛应用于工业产品精密零件的测量,对于手工不易操作的特殊零件的测量,通过三坐标测量机就很容易实现。
比如:平面度、直线度、园柱度等。
空间元素间的位置关系,如:内孔公共轴线间的垂直、平行,公共轴线、公共平面的建立与体现等,都可以通过三坐标测量后获得。
因此,三坐标测量机为对现代工业的高速发展起到了无可替代的作用。
但对于形位误差的确定是个比较复杂的问题,本文对特殊位置度的测量,通过三坐标采集一定的数据,再对数据进行合理计算获得的。
2 位置公差的概念
在形位公差标准中,位置度是一种重要的公差标准。
当最大实体原则应用于被测要素时,实际上是将被测要素的公差带予以放宽,有利于产品的加工和装配,因此,位置度公差在产品设计和实际工作中得到了广泛的应用。
在位置度误差检测中,对图样上经常出现的变化多样的不规范位置度,检验人员对测量结果进行技术处理。
并按照位置度的定义,进行公式推导,再通过测量机检测的数据,准确计算出位置度的误差值。
3 孔的位置度公差带
点的位置度公差带是直径为公差值t,且以点的理想位置为中心的圆或球内的区域。
孔的位置度必须位于直径为公差值t1、t2的两圆柱的重叠部分。
4 分度圆孔组位置度的测量与计算
4.1 被测要素分析
图1为分度圆孔组位置度的典型零件,要求6—ΦD1孔均布,对基准A、B 的位置度公差为Φt。
被测孔位置度的公差带为:被测轴线必须位于直径为公差值t且相对于基准A、B所确定的理想位置为轴线的圆柱面内的区域。
孔对于基准A的误差,是指孔在整个有效长度上所有截面的位置都不能超过允许范围,对于基准B的误差包括径向误差和角向误差。
4.2 分度圆孔的测量及坐标系的建立
首先,通过三坐标的测量建立零件坐标系。
测量基准面A建立第一轴,测量基准孔B及圆周上任一孔。
并在二维状态下计算两孔心连线,将其建为第二轴,取B孔中心为原点,在该坐标系中依次测量圆周上其余各孔,将各孔圆心分别与基准孔B圆心二维连线,并分别计算各连线之间的夹角及两孔心之间的距离。
将分别与其理论正确尺寸、理论正确角度、进行比较,分别得到被测孔的径向误差和角度误差。
4.3 位置度误差计算分析
图2中,设:O点为基准孔B的中心点,A点为圆周孔的理论中心点,C点为圆周孔的实际中心点。
在三角形AOC中:OA=,∠AOC=,CD=
由余弦定理,求被测孔理论中心与实际中心的距离AC则:
圆周孔的位置度=2AC= 2 (1)
按公式(1)计算虽然结果准确,但非常麻烦。
在实际工作中,也可按下述计算弧长的近似公式来进行计算。
经过工作实践中计算比较,计算结果所引起的误差较小,可以忽略不计。
圆周孔的位置度=2 (2)
在工作中,当被测孔的轴线在5mm以内,因为它的误差很小,可不考虑孔对基准A的位置误差,可以忽略不计。
但如果孔的轴线较长,则必须求得圆柱孔与两端面相交的交点位置。
与孔相交的交点的位置度均应在技术要求的范围内,才能保证孔的轴线在技术要求的长度上,位置度都是合格的。
5 结束语
本文对位置度测量进行了具体的分析和计算。
给出了相应的计算公式,为今后的工作提供了可靠的依據。
三坐标精确的测量数据为数控机床的调整和加工提供了可靠的依据,不愧为现代工业发展的得力助手。
参考文献:
[1]形状和位置公差GB/T1182-1996[S] .。