2020年春人教版九年级数学下册27.3 位似同步练习3 及答案
- 格式:doc
- 大小:265.64 KB
- 文档页数:4
3 位似专题一 开放探究题1.在如图所示的方格纸中(每个小方格的边长都是1个单位)有一点O 和△ABC.(1)请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),得到△C B A ''';(2)请用适当的方式描述△C B A '''的顶点C B A ''',,的位置.专题二 实际应用题2.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( )A.8 cmB.20 cmC.3.2 cmD.10 cm3.如图,印刷一张矩形的张贴广告,它的印刷面积是32 dm 2,两边空白各0.5 dm ,上下空白各1 dm ,设印刷部分从上到下长是x dm ,四周空白的面积为S dm 2.(1)求S 与x 的关系式;(2)当要求四周空白处的面积为18 dm 2时,求用来印刷这张广告的纸张的长和宽各是多少?(3)在(2)问的条件下,内外两个矩形是位似图形吗?为什么?专题三 一题多变题4.已知五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 是位似中心,OD ∶OD ′=2∶3,如图所示,求S 五边形ABCDE 与S 五边形A′B′C′D′E′之比是多少?(1)一变:若已知条件不变,五边形ABCDE 的周长为32 cm ,求五边形A′B′C′D′E′的周长;(2)二变:已知条件不变,试判断△ODE 与△OD′E′是位似图形吗?专题四 阅读理解题5.阅读下面材料:“如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.”(1)选择:如图1,点O 是等边△PQR 的中心,P′、 Q′、R′分别是OP 、OQ 、OR 的中点,则△P′Q′R ′与△PQR 是位似三角形,此时,△P′Q′R′与△PQR 的位似比、位似中心分别为( )A .2,点PB .12 ,点PC .2,点OD .12,点O (2)如图2,用下面的方法可以画△AOB 的内接等边三角形,阅读后证明相应的问题的画法: ①在△AOB 内画等边△CDE ,使点C 在OA 上,点D 在OB 上,②连结OE 并延长交AB 于点E ′,过点E ′作E ′C′∥EC ,交OA 于点C′,过点E ′作E ′D′∥ED 交OB 于点D′;③连结C′D′,则△C′D′E′是△AOB 的内接三角形,求证:△C′D′E′是等边三角形.【知识要点】1.两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫做位似图形.2.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或者-k .【温馨提示】1.位似图形的位似中心可以在任何位置.2.解决位似图形中相关图形的周长、面积问题时,一般地首先要确定位似图形的相似比,然后再根据相似形的性质解决问题.【方法技巧】1.利用位似,可以将一个图形放大或缩小.2.判定两个图形是位似图形,必须同时满足两个条件:(1)两个图形相似;(2)两个图形所有对应顶点所在直线相交于同一点.3.在数学上,往往先在一个已知图形中通过探究找出一个正确的结论,再将图形进行适当变换,然后探究这个结论在变换后的图形中是否成立,最后利用发现的一般规律去指导并解决问题,这种研究问题的方法是训练发散思维与创新意识的有效途径.参考答案1. 解:(1)按位似作图在O 点与△ABC 同侧把△ABC 缩小一半,得到△C B A ''';第(2)问是一个开放性问题,对描述△C B A '''的顶点C B A ''',,的位置的方式不确定,如果建立直角坐标系来描述C B A ''',,的位置,假设以O 为坐标原点,建立平面直角坐标系.那么A′的坐标为(-4,1),B′的坐标为(-5,-1),C′的坐标为(-2,-1).2.B 【解析】8:投影三角形的对应边长=2:5.3.解:(1)根据题意,得S =32(2)(1)32x x ++-=x +x 64+2. (2)根据题意,得x +x64+2=18,整理,得x 2-16x +64=0,∴(x -8)2=0,∴x =8,∴x +2=10.所以这张广告纸的长为10 dm,宽为832+2×0.5=5(dm). (3)内外两个矩形是位似图形,理由如下:因为内外两矩形的长,宽的比都为2, ∴45=''=''=''=''A D DA D C CD C B BC B A AB . ∵矩形的各角都为90°,所以矩形ABCD∽矩形A′B′C′D′.∵AC 和BD ,A′C′和B′D′都相交于O 点,∴矩形ABCD 与矩形A′B′C′D′是位似图形.4.解:∵五边形ABCDE 与五边形A′B′C′D′E′是位似图形,OD :OD′=2:3,∴ABCDEA B C D E S S '''''五边形五边形=2OD OD ⎛⎫ ⎪⎝⎭'=223⎛⎫ ⎪⎝⎭=49. (1)由题意可知五边形ABCDE 与五边形A′B′C′D′E′的位似比为′OD OD =23, ∴ABCDE A B C D E C C '''''五边形五边形=OD OD '=23. ∵C 五边形ABCDE =32cm ,∴C 五边形A′B′C′D′E′=C 五边形ABCDE ×32=32×32=48(cm ). (2)∵五边形ABCDE 与五边形A 'B 'C 'D 'E '是位似图形,∴OD OD '=OE DE OE D E '=''=23,• ∴△ODE∽△OD′E′.由题图可知△ODE 与△OD′E′的对应点的连线都经过点O ,∴△ODE 与△OD′E′是位似图形.5.解:(1)由位似的定义,观察图l 知:点O 是位似中心,根据三角形中位线的性质可推出位似比为1/2,故选D .(2)证明:∵EC∥E′C′,∴CE OE C E O E ='''',∠CEO=∠C′E′O . ∵ED∥E′D′,∴ED OE E D O E ='''',∠DEO=∠D′E′O ′, 故′′′′DE ED E C CE =,∠CED=∠C′E′D′. ∵△CDE 是等边三角形,∴CE=DE ,∠CED =60°.∴C′E′=E′D′,∠C′E′D′=60°,∴△C′D′E′是等边三角形.。
描述:例题:初三数学下册(人教版)知识点总结含同步练习题及答案
第二十七章 相似 27.3 位似
一、学习任务
1. 了解图形的位似,能利用位似将一个图形放大或缩小,会建立坐标系描述点的位置.
二、知识清单
位似
三、知识讲解
1.位似
两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,像这样的两个图形叫
做位似图形(homothetic figures ),这个点叫做位似中心.
如图, 各顶点坐标分别是:,,.以 为位似中心,在 轴下方将 放大为原来的 倍.
分析:根据位似变化的性质,即可求得 ,,的坐标,则可画出 .
解:
△ABC A (−4,4)B (−1,2)C (−5,1)O x
△ABC 2A 1B 1C 1△
A 1
B 1
C 1
()
高考不提分,赔付1万元,关注快乐学了解详情。
答案:解析:A .B .C .D .D 由题意知两矩形位似比为 ,矩形 如图所示:
4
(−2,3)
(2,−3)(3,−2)或(−2,3)
(−2,3)或(2,−3)1:2OA 'B 'C '答案:4. 如图,在平面直角坐标系中,以原点 为位中心,将 扩大到原来的 倍,得到 .
若点 的坐标是 ,则点 的坐标是
A .
B .
C .
D .C O △ABO 2△A 'B 'O A (1,2)A '(
)(2,4)
(−1,−2)(−2,−4)(−2,−1)。
27.3 位似知能演练提升能力提升1.已知小孔成像原理的示意图如图所示,根据图中所标注的尺寸,这支蜡烛在暗盒中所成的像CD 的长是( )A.16 cmB.13 cmC.12 cmD.1 cm2.在平面直角坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中心,相似比为12,把△EFO 缩小,则点E 的对应点E'的坐标是( ) A.(-2,1) B .(-8,4) C.(-8,4)或(8,-4)D.(-2,1)或(2,-1)3.在任意一个三角形内部,画一个小三角形,使其各边与原三角形各边平行,则它们的位似中心是( ) A.一定点B.原三角形三边垂直平分线的交点C.原三角形角平分线的交点D.位置不定的一点4.如图,将△ABC 的三边分别放大为原来的2倍得到△A 1B 1C 1(顶点均在格点上),它们是以点P 为位似中心的位似图形,则点P 的坐标是( )A.(-4,-3)B.(-3,-3)C.(-4,-4)D.(-3,-4)5.如图,在△ABC 中,A ,B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形,并把△ABC 的边长放大到原来的2倍,记所得的图形是△A'B'C.设点B 的对应点B'的横坐标是a ,则点B 的横坐标是( )A.-12a B.-12(a+1) C.-12(a-1)D.-12(a+3)6.下列关于位似图形的表述正确的是 .(只填序号)①相似图形一定是位似图形,位似图形一定是相似图形 ②位似图形一定有位似中心③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形④位似图形上任意两点与位似中心的距离之比等于相似比7.如图,原点O 是△ABC 和△A'B'C'的位似中心,点A (1,0)与A'(-2,0)是对应点,△ABC 的面积是32,则△A'B'C'的面积是 .8.如图,梯形ABCD 的四个顶点分别为A (0,6),B (2,2),C (4,2),D (6,6).按下列要求画图.(1)在平面直角坐标系中,画出以原点O为位似中心,相似比为1的位似图形A1B1C1D1;2(2)画出位似图形A1B1C1D1向下平移5个单位长度后的图形A2B2C2D2.9.如图,为测量有障碍物相隔的A,B两点间的距离,在适当处放置一水平桌面,铺上白纸,在点A,B处立上标杆,在纸上立大头针于点O,通过观测,在纸上确定了点C.已知O,C,A在同一条直线上,并且OA的长为OC的100倍,问接下来怎么做,就能得出A,B两点间的距离?创新应用★10.已知平面直角坐标系如图所示.(1)描出下列各点:A(1,0),B(3,0),C(3,3),D(0,1),并将这些点用线段依次连接起来;(2)以坐标原点O为位似中心,把(1)中所得图形放大为原来的2倍.★11.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)求△A1B1C1与△ABC的相似比;(2)画出△A1B1C1关于y轴对称的△A2B2C2;(3)设点P(a,b)为△ABC内一点,求依上述两次变换后,点P在△A2B2C2内的对应点P2的坐标.能力提升1.D 易得△ABO ∽△CDO ,所以AB CD=122.所以CD=1(cm). 2.D 3.D4.A 因为是放大为原来的2倍,且点A 1,A 同在一条纵线上,所以点P 一定也在A 1A 的延长线上,设AP=x ,所以有xx+5=12,解得x=5,所以点P 的坐标是(-4,-3).5.D 假设将点C 平移到原点,则此时点B'的横坐标为a+1,则点B 的横坐标为-12(a+1),故原来的点B 的横坐标为-12(a+1)-1,即-12(a+3). 6.②③7.6 由题意得,相似比为2,所以S △ABC ∶S △A'B'C'=1∶4,即32∶S △A'B'C'=1∶4,所以S △A'B'C'=6. 8.解 (1)图形A 1B 1C 1D 1如图所示;(2)图形A 2B 2C 2D 2如图所示.9.解 再在纸上确定点D ,使点O ,B ,D 在一条直线上,且OB 是OD 的100倍,然后,再在纸上量出C ,D 两点间的距离,将其放大100倍即得A ,B 两点间的距离. 创新应用 10.解 如图.(1)顺次连接点A ,B ,C ,D 得四边形ABCD ;(2)以点O 为位似中心,把四边形ABCD 放大为原来的2倍,得新四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2.11.解(1)△A1B1C1与△ABC的相似比等于A1B1AB =42=2.(2)如图所示.(3)点P(a,b)为△ABC内一点,依次经过题中的两次变换后,点P的对应点P2的坐标为(-2a,2b).。
2020-2021学年九年级下册数学人教版同步课时作业27.3位似一、单选题1.有下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形; ②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比. 其中正确命题的序号是( )A.②③B.①②C.③④D.②③④2.在下列各图中,不添加任何辅助线,若每个图所给出的两个三角形都是相似的,则位似图形的个数是( )A .1B .2C .3D .43.如图,位似图形由三角尺与其在灯光照射下的中心投影组成,相似比为2:5,且三角尺一边长为8 cm,2三角形的对应边长为( )A.8 cmB. 20 cmC.3.2 cmD. 10 cm4.如图,在直角坐标系中,有两点()()6,3,6,0A B ,以原点O 为位似中心,相似比为13,在第一象限内把线段AB 缩小后得到线段CD ,则点C 的坐标为( )A. ()2,1B. ()2,0C. ()3,3D.()3,15.如图所示的两个四边形是位似图形,它们的位似中心是( )A.点MB.点NC.点OD.点P6.如图27-3-3, A B C '''△是ABC △以点O 位似中心经过位似变换得到的,若A B C '''△的面积与ABC △的面积比是49∶,则OB OB '∶为( )A.23∶B.32∶C.45∶D.49∶7.如图,在平面直角坐标系中,已知点3,6 ,()(9,3)A B ---,以原点O 为位似中心,相似比为13,把ABO △缩小,则点A 的对应点'A 的坐标是( )A.()1,2-B.(98)1-,C. (98)1-,或(9,)18-D. ()1,2-或(1,)2-8.在平面直角坐标系中,有一条鱼,它有六个顶点,则( )A.将各点横坐标乘2,纵坐标不变,得到的鱼与原来的鱼位似B.将各点纵坐标乘2,横坐标不变,得到的鱼与原来的鱼位似C.将各点横、纵坐标都乘2,得到的鱼与原来的鱼位似D.将各点横坐标乘2,纵坐标乘12,得到的鱼与原来的鱼位似 9.如图27-3-4,四边形ABCD 和四边形A B C D ''''是以点O 为位似中心的位似图形,若21OA A A ''=,∶∶四边形A B C D ''''的面积为212cm ,则四边形ABCD 的面积为( )A.224cmB.227cmC.236cmD.254cm二、填空题10.在平面直角坐标系中,点,C D 的坐标分别为()()2,3,1,0C D ,现以原点为位似中心,将线段CD 放大得到线段AB .若点D 的对应点B 在x 轴上且2OB =,则点C 的对应点A 的坐标为 .11.如图,以点O 为位似中心,将OAB △放大后得到23OCD OA AC ==,,△,则ABCD=______.12.在平面直角坐标系中,点,A B 的坐标分别是(4,2),( 5,0),以原点O 为位似中心,相似比为12,把ABO △缩小,得到11A B O △,则点A 的对应点1A 的坐标为_________.三、解答题13.在如图27-3-20 所示的边长为1的正方形网格中.(1)以点C 为位似中心,作出ABC △的位似图形11A B C △,使其相似比为12∶,且ABC △与11A B C △位于点C 的两侧,并写出1A 的坐标;(2)作出将ABC △绕点C 顺时针旋转90°后的22A B C △; (3)在(2)的条件下求出点B 经过的路径长.参考答案1.答案:A解析:相似图形不一定是位似图形,位似图形一定是相似图形,①错误;位似图形一定有位似中心,②正确;相似比不同时,利用位似变换既能放大图形也能缩小图形,③错误;如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形,④正确;位似图形上对应两点与位似中心的距离之比等于位似比,⑤错误.故选A. 2.答案:C解析:根据位似图形的定义可知,第1、2、4个图形是位似图形,而第3个图形对应点的连线不能交于一点,故位似图形有3个.故选:C . 3.答案:B解析:∵位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,三角尺的一边长为8cm, ∴投影三角形的对应边长为:28205÷= cm. 故选:B. 4.答案:A解析:由题意,得ODC OBA ∆~∆,相似比是13, ∴13OD CD OB AB ==,又6OB =,3AB =, ∴2OD =,1CD =, ∴点 O 的坐标为()2,1. 5.答案:D解析:点P 在对应点M 和点N 所在直线上,再利用连接另两个对应点,得出相交于P 点,即可得出P 为两图形位似中心,故选D.6.答案:A 解析:,A B C ABC '''△△~A B C '''△与ABC △的面积之比为49∶,A B C '''∴△与ABC △的相似之比为23∶,由位似变换的性质可知,//,,A B AB OA B OAB ''''∴△△~2.3OB A B OB AB '''∴==故选A. 7.答案:D 解析:3,6,9,3.()()A B ---以原点O 为位似中心,相似比为13,把ABO △缩小,∴点A 的对应点'A 的点的坐标为11(3,6)33-⨯⨯或11(3(),6())33-⨯-⨯-, 即'A 的点的坐标为(1,2)-或(1,2)-.故选D. 8.答案:C解析:在平面直角坐标系中,如果图形的各个顶点横、纵坐标同时乘同一个非0的实数k ,得到的图形与原图形关于原点成位似图形,位似比是k 若乘的不是同一个数,得到的图形一定不会与原图形关于原点对称故选C. 9.答案:B解析:四边形ABCD 和四边形A B C D ''''是以点O 为位似中心的位似图形,21OA A A ''=,∶∶23,OA OA '∴=∴∶∶四边形ABCD 与四边形A B C D ''''的面积之比为94,∶四边形A B C D ''''的面积为212cm ,∴四边形ABCD 的面积为227cm .故选B.10.答案:(4,6)或(4,6)-- 解析:如图,由题意,位似中心是O ,位似比为2,OC AC ∴=(2,3),C(4,6)A ∴或(4,6)--,11.答案:25解析:以点O 为位似中心,将OAB △放大后得到OCD △,23OA AC ==,, 22235OA AB OC CD ∴===+. 故答案为:25.12.答案:(2,1)或(2,1)--解析:以原点O 为位似中心,相似比为12,把ABO △缩小,点A 的坐标是(4,2),则点A 对应点1A 的坐标为11(42)22⨯⨯,或11(4()2())22⨯⨯,即(2,1)或(2,1)--.13.答案:(1)如图,11A B C △即为所求作三角形,点1A 的坐标为(3,3)-.(2)如图,22A B C △即为所求作三角形.(3)CB =点B经过的路径长.==。
2022-2023学年人教版九年级数学下册《27.3位似》同步题型分类练习题(附答案)一.位似变换1.如图,已知△ABC与△DEF位似,位似中心为O,且△ABC的面积与△DEF的面积之比是16:9,则AO:AD的值为()A.4:7B.4:3C.6:4D.9:52.如图平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,点A,B,E在x轴上,若正方形ABCD的边长为3,则F点坐标为()A.(16.5,9)B.(18,12)C.(16.5,12)D.(16,12)3.在如图所示的网格中,以点O为位似中心,能够与四边形ABCD是位似图形的为()A.四边形NGMF B.四边形NGME C.四边形NHMF D.四边形NHME 4.如图所示,在平面直角坐标系中,A(1,0),B(0,2),C(﹣2,1),以A为位似中心,把△ABC在点A同侧按相似比1:2放大,放大后的图形记作△A'B'C',则C'的坐标为()A.(﹣6,2)B.(﹣5,2)C.(﹣4,2)D.(﹣3,2)5.如图,在直角坐标系中,矩形ABCD与矩形EFGO位似,矩形ABCD的边CD在y轴上,点B的坐标为(﹣4,4),矩形EFGO的两边都在坐标轴上,且点F的坐标为(2,1),则矩形ABCD与EFGO的位似中心的坐标是.6.如图,平面直角坐标系中,点A在x轴正半轴上,且OA=4,∠BOA=30°,∠B=90°,以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,则点B的对应点B′的坐标为.7.如图,在平面直角坐标系中,A、B两点的坐标分别为A(﹣1,2)、B(0,2),C、D 两点的坐标分别为C(0,﹣1)、D(2,﹣1).若线段AB和线段CD是位似图形,且位似中心在y轴上,则位似中心的坐标为.8.《墨子•天文志》记载:“执规矩,以度天下之方圆.”度方知圆,感悟数学之美.如图,正方形ABCD的面积为4,以它的对角线的交点为位似中心,作它的位似图形A'B'C'D',若A'B':AB=2:1,则四边形A'B'C'D'的外接圆的周长为.9.如图,△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,则点A(1,2)在第一象限的对应点A1的坐标是.10.如图,在平面直角坐标系中,O是坐标原点,以点O为位似中心,△A1B1C1和△ABC 相似比为2:1,在网格中画出新图象△A1B1C1,若每个小正方形边长均为1,请写出A1,B1,C1的坐标.11.如图所示,由位似的正△A1B1C1,正△A2B2C2,正△A3B3C3,…正△A n B n∁n组成的相似图形,其中第一个△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,A3是OA2的中点…A n是OA n﹣1的中点,顶点B2,B3,…,B n.C2,C3,…,∁n都在B1C1边上.(1)试写出△A10B10C10和△A7B7C7的相似比和位似中心;(2)求出第n个三角形△A n B n∁n(n≥2)的周长.12.如图,△ABC中,P′是边AB上一点,四边形P'Q'M'N'是正方形,点Q',M'在边BC上,点N′在△ABC内.连接BN′,并延长交AC于点N,过点N作NM⊥BC于点M,NP⊥MN交AB于点P,PQ⊥BC于点Q.(1)求证:四边形PQMN为正方形;(2)若∠A=90°,AC=1.5m,△ABC的面积=1.5m2.求PN的长.13.(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′.点A,B在数轴t,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是,若点B′表示的数是2,则点B表示的数是;已知线段AB上的点E经过上述操作后得到的对应点E'点E重合,则点E表示的数是.(2)在平面直角坐标系xOy中,已知△ABC的顶点A(﹣2,0),B(2,0),C(2,4),对△ABC及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同个实数a,将得到的点先向右平移m单位,再向上平移n个单位(m>0,n>0),得到△A′B′C′及其内部的点,其中点A,B的对应点分别为A′(1,2),B′(3,2).△ABC内部是否存在点F,使得点F经过上述操作后得到的对应点F′与点F重合,若存在,求出点F 的坐标;若不存在请说明理由.14.在平面直角坐标系中,抛物线L:y=﹣x2+x+2与y轴交于点C,与x轴交于A、B两点(点A在点B的左侧).(1)求A、B、C三点的坐标;(2)连接AC、BC,以点C为位似中心,将△ABC扩大到原来的2倍得到△A1B1C,其中点A1、B1分别是点A、B的对应点,如何平移抛物线L才能使其同时经过点A1、B1,求出所有的平移方式.二.作图-位似变换15.如图所示△DEF是△ABC位似图形的几种画法,其中正确的个数是()A.4B.3C.2D.116.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2B.(2,2),C.(2,2),2D.(1,1),17.如图,在坐标系中,以A(0,2)为位似中心,在y轴右侧作△ABC放大2倍后的位似图形△AB'C',若C的对应点C'的坐标为(m,n),则点C的坐标为()A.(m,n+3)B.(m,n﹣3)C.(m,n+2)D.(m,n﹣2)18.如图,以点O为位似中心,把△AOB缩小后得到△COD,使△COD∽△AOB,且相似比为,已知点A(3,6),则点C的坐标为.19.如图,以点O为位似中心,把△ABC放大2倍得到△A'B'C'',①AB∥A'B';②△ABC∽△A'B'C';③AO:AA'=1:2;④点C、O、C'三点在同一直线上.则以上四种说法正确的是.20.如图,在平面直角坐标系中,矩形AOCB的两边OA,OC分别在x轴和y轴上,且OA =2.OC=1,则矩形AOCB的对称中心的坐标是;在第二象限内,将矩形AOCB 以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,…,按此规律,则矩形A4OC4B4的对称中心的坐标是.21.在平面直角坐标系中,△ABC的顶点A的坐标为(2,﹣5),若以原点O为位似中心,作△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为2:1,且点A1和点A 不在同一象限内,则点A1的坐标为.22.如图,在边长为1的小正方形组成的网格中,建立平面直角坐标系,△ABC的三个顶点均在格点(网格线的交点)上.以原点O为位似中心,画△A1B1C1,使它与△ABC的相似比为2,则点B的对应点B1的坐标是.23.如图所示,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,0),B(3,1),C (2,3).请在所给直角坐标系中按要求画图和解答下列问题:(1)以原点O为位似中心,在原点的另一侧画出△ABC的位似三角形△DEF,△ABC 与△DEF的位似比为;(2)如果△ABC内部一点M的坐标为(a,b),请写出M的对应点M'的坐标(,).24.如图,在平面直角坐标系网格中,将△ABC进行位似变换得到△A1B1C1.(1)在平面直角坐标系中画出位似中心;(2)设点P(a,b)为△ABC内一点,确定点P在△A1B1C1内的对应点P1的坐标.25.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A2B2C2,且△A1B1C1与△A2B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.26.如图,△ABC三个顶点分别为A(0,﹣3),B(3,﹣2),C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度.(1)画出△ABC向上平移5个单位得到的△A1B1C1;(2)以点C为位似中心,在网格中画出△A2B2C2,使得△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并写出A2的坐标.27.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1)、B(﹣3,2)、C(﹣1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕O点顺时针旋转90°后得到的△A2B2C2.28.如图所示,图中的小方格都是边长为1的正方形,△ABC与△A'B'C'是以点O为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)画出位似中心点O;(2)直接写出△ABC与△A′B′C′的位似比;(3)以位似中心O为坐标原点,以格线所在直线为坐标轴建立平面直角坐标系,并直接写出△A′B′C′各顶点的坐标.参考答案一.位似变换1.解:∵△ABC与△DEF位似,∴△ABC∽△DEF,AC∥DF,∵△ABC的面积与△DEF的面积之比是16:9,∴=,∵AC∥DF,∴△AOC∽△DOF,∴==,∴AO:AD=4:7,故选:A.2.解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且位似比为,∴==,即==,解得:EF=12,OB=4,∴F(16,12).故选:D.3.解:如图,四边形ABCD的位似图形是四边形NGMF.故选:A.4.解:∵以A为位似中心,把△ABC按相似比1:2放大,放大后的图形记作△AB'C',∴AC=AC′,∴点C是线段AC′的中点,∵A(1,0),C(﹣2,1),∴C'的坐标为(﹣5,2).故选:B.5.解:连接BF交y轴于点P,∵C和F是对应点,∴点P为位似中心,由题意得,GF=2,AD=4,GC=4﹣1=3,∵BC∥GF,∴△BPC∽△FPG,∴=,即=2,解得,GP=1,∴OP=2,∴位似中心的坐标是(0,2),故答案为:(0,2).6.解:作BE⊥OA于E,则∠BEO=90°,∵∠ABO=90°,∠BOA=30°,∴OB=OA•cos30°=4×=2,∴BE=OB=,OE=OB•cos30°=2×=3,∴点B的坐标为:(3,),∵以点O为位似中心,在第一象限内将△AOB放大,使相似比为2:1,∴点B的对应点B'的坐标为:(3×2,×2),即(6,2),故答案为:(6,2).7.解:连接AD交BC于E,则点E为位似中心,∵A(﹣1,2)、B(0,2),C(0,﹣1)、D(2,﹣1).∴AB=1,CD=2,BC=3,∵线段AB和CD是位似图形,∴AB∥CD,∴=,即=,解得BE=1,∴OE=OB﹣BE=1,∴位似中心点E的坐标为(0,1),故答案为:(0,1).8.解:如图,连接B′D′.设B′D′的中点为O.∵正方形ABCD∽正方形A′B′C′D′,相似比为1:2,又∵正方形ABCD的面积为4,∴正方形A′B′C′D′的面积为16,∴A′B′=A′D′=4,∵∠B′A′D′=90°,∴B′D′=A′B′=4,∴正方形A′B′C′D′的外接圆的周长=4π,故答案为:4π.9.解:∵△ABC与△A1B1C1是以原点O为位似中心的位似图形,且位似比为1:2,∵A(1,2),点A(1,2)在第一象限的对应点是A1,∴点A1的坐标为:(2,4).故答案为:(2,4).10.解:如图,△A1B1C1即为所求,A1(0,8),B1(6,6),C1(6,2).11.解:(1)∵△A1B1C1的边长为1,点O是B1C1中点,A2是OA1的中点,∴正△A2B2C2的边长为,正△A3B3C3的边长为()2,正△A10B10C10和的边长为()9,正△A7B7C7的边长为()6,∴正△A10B10C10和正△A7B7C7的相似比==;它们的位似中心为点O;(2)∵第n个三角形△A n B n∁n(n≥2)的边长为()n﹣1,∴第n个三角形△A n B n∁n(n≥2)的周长为.12.(1)证明:∵NM⊥BC,NP⊥MN,PQ⊥BC,∴四边形PQMN为矩形,∵四边形P'Q'M'N'是正方形,∴PN∥P′N′,∴=,∵MN∥M′N′,∴=,∴=,而P′N′=M′N′,∴PN=MN,∴四边形PQMN为正方形;(2)解:作AD⊥BC于D,AD交PN于E,如图,∵△ABC的面积=1.5,∴AB•AC=1.5,∴AB=2,∴BC==2.5,∵BC•AD=1.5,∴AD==,设PN=x,则PQ=DE=x,AE=﹣x,∵PN∥BC,∴△APN∽△ABC,∴=,即=,解得x=,即PN的长为m.13.解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则b+1=b,解得b=;故答案为:0,3,;(2)根据题意,得:,解得:,设点F的坐标为(x,y),∵对应点F′与点F重合,∴x+2=x,y+2=y,解得x=y=4,所以,点F的坐标为(4,4),∵点F的坐标为(4,4)不在△ABC内,故△ABC内部不存在点F,使得点F经过上述操作后得到的对应点F′与点F重合.14.解:(1)在y=﹣x2+x+2中,令y=0,即0=﹣x2+x+2,解得:x1=2,x2=﹣1,∴A(﹣1,0),B(2,0),令x=0,即y=2,∴C(0,2);(2)如图,当抛物线经过A1(2,6),B1(﹣4,6)时,设抛物线的解析式,y=﹣x2+bx+c,则有,解得,,∴抛物线的解析式为y=﹣x2﹣2x+14=﹣(x+1)2+15,当抛物线经过A2(﹣2,﹣2),B2(4,﹣2)时,同法可得抛物线的解析式为:y=﹣x2+2x+6=﹣(x﹣1)2+7.∵原来的抛物线的解析式为y=﹣(x﹣)2+,∴+1=,15﹣=,∴原来抛物线向左平移,再向上平移单位得到y=﹣x2﹣2x+14.1﹣=,7﹣=,原来抛物线向右平移单位,再向上平移单位得到y=﹣x2+2x+6.二.作图-位似变换15.解:第一个图形中的位似中心为A点,第二个图形中的位似中心为AD与BC的交点,第三个图形中的位似中心为O点,第四个图形中的位似中心为O点.故选:A.16.解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.17.解:过点A作x轴的平行线DD′,作CD⊥DD′于D,作C′D′⊥DD′于D′,设C(x,y),则CD=y﹣2、AD=﹣x,C′D′=2﹣n,AD′=m,∵△AB′C′与△ABC的位似比为2:1,∴==,即==,解得:x=﹣m,y=﹣n+3,∴点C的坐标为(﹣m,﹣n+3),故选:A.18.解:由题意得,点A与点C是对应点,△AOB与△COD的相似比是3,∴点C的坐标为(3×,6×),即(1,2),当点C值第三象限时,C(﹣1,﹣2)故答案为:(1,2)或(﹣1,﹣2).19.解:∵以点O为位似中心,把△ABC放大2倍得到△A'B'C'',∴AB∥A'B,△ABC∽△A'B'C';AO:AA'=2:1;点C、O、C'三点在同一直线上,①①②④正确,故答案为:①②④.20.解:∵OA=2.OC=1,∴B(﹣2,1),∴矩形AOCB的对称中心的坐标为(﹣1,),∵将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,∴B1(﹣3,),同理可得B2(﹣,),B3(﹣,),B4(﹣,),∴矩形A4OC4B4的对称中心的坐标是(﹣,).故答案为(﹣1,),(﹣,).21.解:在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(1,﹣2.5),不在同一象限内,∵△ABC与△A′B′C′是以原点O为位似中心的位似图形,其中相似比是2:1,A坐标为(2,﹣5),∴则点A′的坐标为:(﹣1,2.5),故答案为:(﹣1,2.5).22.解:如图所示:△A1B1C1和△A′B′C′与△ABC的相似比为2,点B的对应点B1的坐标是:(4,2)或(﹣4,﹣2).故答案为:(4,2)或(﹣4,﹣2).23.解:(1)如图,△DEF即为所求;(2)M′(﹣2a,﹣2b).故答案为:﹣2a,﹣2b.24.解:(1)如图点O即为位似中心;(2)设点P(a,b)为△ABC内一点,则点P在△A1B1C1内的对应点P1的坐标(2a,2b).25.解:(1)如图,点M为所作,M点的坐标为(0,2);(2)如图,△A2B2C2即为所求;(3)C2(﹣4,2).26.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.A2的坐标(﹣2.,﹣2).27.解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求.28.解:(1)如图,(2)2:1,(3)A′(﹣6,0),B′(﹣3,2),C′(﹣4,4).。
人教版九年级数学下册《27.3位似》同步测试题带答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列图形中不是位似图形的是()A.B.C.D.2.如图,△ABC与△DEF是位似图形,点O是位似中心,若OA=2AD,S△ABC=4,则S△DEF等于()A.6B.8C.9D.123.如图,△ABC与△DEF是位似三角形,位似比为2:3,已知AB=3,则DE的长等于()A.49B.2C.92D.2744.如图,四边形EFGH与四边形ABCD位似,其位似中心为点O,且相似比为59,若四边形ABCD的周长为9,则四边形EFGH周长为()A.5B.259C.815D.729255.在平面直角坐标系中,已知点E(−4,2),F(−2,−2),以原点O为位似中心,将△EFO放大为原来的2倍,则点E的对应点E1的坐标是()A.(−2,1)B.(−8,4)C.(−8,4)或(8,−4)D.(−2,1)或(2,−1)6.如图,将视力表中的两个“E”放在平面直角坐标系中,两个“E”是位似图形,且相似比为2:1,位似中心为坐标原点O,点M与点N为一组对应点,若点M的坐标为(1,2),则点N的坐标为()A.(2,3)B.(2,4)C.(3,4)D.(1,4)7.如图,在平面直角坐标系中,△ABC与△FDE是位似图形,则它们位似中心的坐标是().A.(3,1)B.(4,2)C.(5,2)D.(6,0)8.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(−1,0)以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,并把△ABC的边长放大到原来的2倍.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.−12a B.−a+12C.−a−12D.−a+32二、填空题9.已知点A(0,3),B(−4,8),以原点O为位似中心,把线段AB缩短为原来的1,点D与点B对应.则点D的坐4标为.10.如图,图形甲与图形乙是位似图形,O是位似中心,位似比为2:3,点A,B的对应点分别为点A′,B′.若AB=6,则A′B′的长为.11.如图,菱形ABCD与菱形A'BC'D'是位似图形,若AD=6,A'D'=4则菱形A'BC'D'与菱形ABCD的位似比为.12.在△ABC中A(−2,1),B(3,2),C(1,−4),将△ABC以O为位似中心放大为原来的3倍,成为△A′B′C′,则A′点的坐标为.,在位似13.如图,在平面直角坐标系中,已知△AOB中,点B(−9,−3),以原点O为位似中心,相似比为13中心同侧把△ABO缩小,则点B的对应点B′的坐标是.14.在如图所示的正方形网格中,以点O为位似中心,作△ABC的位似图形,若点D是点C的对应点,则点A的对应点是点.15.如图,△ABC和△DEF是以点O为位似中心的位似图形.若OA=AD,则△ABC与△DEF的面积比是.16.如图,在平面直角坐标系中,△OAB顶点O在坐标原点,顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D的坐标为(4.5,0),则点C的坐标为.三、解答题17.如图,分别按下列要求作出四边形ABCD以O点为位似中心的位似四边形A′B′C′D′.(1)沿OA方向放大为原图的2倍;(2)沿AO的方向放大为原图的2倍.18.在平面直角坐标系中,△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0).以原点O为位似中心,在第三象限画出△OA1B1,使它与△OAB的相似比是2.19.如图,在每个小正方形的边长为1个单位的网格中,给出了以格点(网格线的交点)为端点的线段AB和格点O.(1)在所给网格中,以格点O为位似中心将线段AB放大2倍得到线段A1B1,画出线段A1B1;(2)把线段AB绕端点B顺时针旋转90°得到线段BA2,画出线段BA2.20.如图,小明在学习图形的位似时,利用几何画板软件,在平面直角坐标系中画出了△ABC的位似图形△A1B1C1.(1)在图中标出△ABC和△A1B1C1的位似中心M点的位置并写出M点的坐标.(2)若以点A1为位似中心,请你帮小明在图中画出△A1B1C1的位似图形△A1B2C2,且△A1B1C1与△A1B2C2的位似比为2:1.(3)直接写出(2)中C2点的坐标.21.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(1,−2),B(4,−1)(1)画出将△ABC向左平移5个单位,再向上平移3个单位后的△A1B1C1,并写出点B的对应点B1的坐标;(2)以原点O为位似中心,在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1,并写出点B1的对应点B2的坐标;(3)若△A1B1C1内部任意一点P1的坐标为(a−5,b+3),直接写出经过(2)的变化后点P1的对应点P2的坐标(用含a ,b 的代数式表示).参考答案:题号 1 2 3 4 5 6 7 8 答案DCCAC BCD1.解:A 、是位似图形,故本选项不符合题意; B 、是位似图形,故本选项不符合题意; C 、是位似图形,故本选项不符合题意; D 、不是位似图形,故本选项符合题意; 故选:D .2.解:∵△ABC 与△DEF 是位似图形且OA =2AD . ∵两位似图形的位似比为2:3 ∵两位似图形的面积比为4:9 又∵S △ABC =4 ∵S △DEF =9. 故选:C .3.解:∵△ABC 与△DEF 是位似图形,位似比为2:3 ∵ABDE =23 ∵AB =3 ∵DE =92故选:C .4.解:∵四边形EFGH 与四边形ABCD 位似,且相似比为59∵C 四边形EFGHC四边形ABCD=59∵C 四边形ABCD =9 ∵C 四边形EFGH =5 故选A .5.解:∵原点O 为位似中心,将△EFO 放大为原来的2倍,点E 的坐标为(−4,2) ∵点E 的对应点E 1的坐标为(−4×2,2×2)或(−4×(−2),2×(−2)),即(−8,4)或(8,−4) 故选:C .6.解:∵两个“E”的相似比为2:1,点M的坐标为(1,2)∵点N的坐标为(2,4)故选B.7.解:如图,点G为位似中心,则它们位似中心的坐标是(5,2)故选:C.8.解:以点C为坐标原点建立新的坐标系点C的坐标是(−1,0)点B′的横坐标为:a+1以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′则点B在以C为坐标原点的坐标系中的横坐标为:−a+12点B在原坐标系中的横坐标为:−a+12−1=−a+32故选:D9.解:∵以原点O为位似中心,把线段AB缩短为原来的14,B(−4,8)∴点D的坐标为(−4×14,8×14)或[−4×(−14),8×(−14)]即:(−1,2)或(1,−2)故答案为:(−1,2)或(1,−2).10.解:∵图形甲与图形乙是位似图形,位似比为2:3 AB=6∵AB A′B′=23即6A′B′=23解得,A′B′=9故答案为:9.11.解:∵菱形ABCD与菱形A'BC'D'是位似图形∴菱形A'BC'D'与菱形ABCD 的位似比=A′D′AD=46=23故答案为:2∶3.12.解:∵△ABC 以原点O 为位似中心,将△ABC 以O 为位似中心放大为原来的3倍A (−2,1) ∵A ′的坐标为(−2×3,1×3)或[−2×(−3),1×(−3)] 即A ′的坐标为(−6,3)或(6,−3). 故答案为:(−6,3)或(6,−3).13.解:∵以原点O 为位似中心,相似比为13,在位似中心同侧把△ABO 缩小∵点B (−9,−3)的对应点B ′的坐标是(−3,−1). 故答案为:(−3,−1). 14.解:如图,连接AO 并延长∵以点O 为位似中心,点D 是点C 的对应点 ∴位似比为OC OD=24=12∴则点A 的对应点是H 故答案为:H . 15.解:∵OA =AD∴OA :OD =1:2∵△ABC 和△DEF 是以点O 为位似中心的位似图形∴△ABC ∽△DEF ,AB ∥DE ∴∠ODE =∠OAB,∠OBA =∠OED∴△AOB ∽△DOE ∴AB DE =OA OD =12∴△ABC 与△DEF 的面积比为:(12)2=14故答案为:1:4.16.解:∵顶点A,B的坐标分别为(−2,−1),(−1.5,0).△OCD与△OAB位似,位似中心是原点O,若点D 的坐标为(4.5,0)∴A点的对应点C的坐标为[−2×(−3),−1×(−3)],即(6,3)故答案为:(6,3).17.(1)解:沿OA方向放大为原图的2倍的图如下图所示(2)解:沿AO的方向放大为原图的2倍的图如下图所示18.解:∵△OAB的三个顶点坐标分别为A(2,3),B(3,1),O(0,0),△OA1B1在第三象限,且与△OAB的相似比是2∵A1(−4,−6),B1(−6,−2)如图所示:△OA1B1即为所求;19.(1)解:连接OA并延长至A1,使AA1=OA,连接OB并延长至B1,使BB1=OB,连接A1B1,所作线段A1B1如图所示;(2)解:以B中心,把线段AB顺时针旋转90°得到线段BA2,如图所示,线段BA2为求作的.20.(1)解:如图所示,连接AA1,CC1,线段AA1,CC1交与点M∵点M即为所求位似中心∵点M的坐标为(0,2)故答案为:(0,2).(2)解:位似比为2:1,位似中心为点A1,如图所示,延长C1A1,反向延长C1A1,使得A1C2=12A1C1,A1C2′=1 2A1C1延长B1A1,反向延长B1A1,使得A1B2=12A1B1,A1B2′=12A1B1∵△A1B2C2与△A1B2′C2′均为所求图形.(3)解:由(2)作图可知∵C2(−4,2)或C2′(−4,6)故答案为:(−4,2)或(−4,6).21.(1)解:如图所示,△A1B1C1为所求三角形,B1(−1,2);(2)解:如图所示,△A2B2C2为所求三角形,B2(−2,4);(3)解:∵在位似中心的同侧画出△A1B1C1的一个位似△A2B2C2,使它与△A1B1C1的面积比为4:1∵△A2B2C2和△A1B1C1的相似比为2:1∵P1(a−5,b+3)∵P2(2a−10,2b+6).第11 页共11 页。
27.3 位似第1课时 位似图形的概念及画法1.下图中的两个图形不是位似图形的是( )2.图中的两个四边形是位似图形,它们的位似中心是( )A .点MB .点NC .点OD .点P3.两个图形中,对应点到位似中心的线段比为2∶3,则这两个图形的相似比为( )A .2∶3B .4∶9 C.2∶ 3 D .1∶24.如图,两个位似图形△ABO 和△A ′B ′O ,且AB ∥A ′B ′,若OA ∶OA ′=3∶1,则正确的是( )A .AB ∶A ′B ′=3∶1 B .AA ′∶BB ′=AB ∶A ′B ′C .OA ∶OB ′=2∶1D .∠A =∠B ′5.如图,△DEF 与△ABC 是位似图形,点O 是位似中心,点D ,E ,F 分别是OA ,OB ,OC 的中点,则△DEF 与△ABC 的面积比是( )A .1∶6B .1∶5C .1∶4D .1∶26.如图,四边形ABCD 与四边形EFGH 位似,其位似中心为点O ,且OE EA =43,则FGBC= .7.如图,△ABC 与△A ′B ′C ′是位似图形,且位似比是1∶2,若AB =2 cm ,则A ′B ′= cm ,并在图中画出位似中心O.8.如图,以O点为位似中心,将四边形ABCD缩小为原来的一半.9.如图,边长为1的正方形网格纸中,△ABC为格点三角形(顶点都在格点上).在网格纸中,以点O为位似中心画出△ABC的一个位似图形△A′B′C′,使△ABC与△A′B′C′的相似比为1∶2.(只需画出一个符合条件的△A′B′C′,不要求写画法)10.如图,三个正六边形全等,其中成位似图形关系的有()A.0对B.1对C.2对D.3对11.下列关于位似图形的表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于位似比.其中正确命题的序号是()A.②③ B.①②C.③④ D.②③④12.如图,四边形ABCD与四边形AEFG是位似图形,且AC∶AF=2∶3,则下列结论不正确的是()A.四边形ABCD与四边形AEFG是相似图形B.AD与AE的比是2∶3C.四边形ABCD与四边形AEFG的周长比是2∶3D.四边形ABCD与四边形AEFG的面积比是4∶913.如图,图中的小方格都是边长为1的正方形,△ABC 与△A ′B ′C ′是以点O 为位似中心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心O ;(2)求出△ABC 与△A ′B ′C ′的相似比;(3)以点O 为位似中心,再画一个△A 1B 1C 1,使它与△ABC 的相似比等于1.5.14.如图,已知B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE. (1)求证:四边形BCDE 位似于四边形B ′C ′D ′E ′; (2)若AB ′B ′B=3,S 四边形BCDE =20,求S 四边形B ′C ′D ′E ′.第2课时 平面直角坐标系中的位似1.如图,在平面直角坐标系中,以原点为位似中心,将△AOB 扩大到原来的2倍,得到△OA ′B ′.若点A 的坐标是(1,2),则点A ′的坐标是( )A .(2,4)B .(-1,-2)C .(-2,-4)D .(-2,-1)2.如图所示,在平面直角坐标系中,已知点A(2,4),过点A 作AB ⊥x 轴于点B.将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .2 53.如图,在平面直角坐标系中,以点O 为位似中心,将△OCD 放大得到△OAB ,点C ,D 的坐标分别为(2,1),(2,0),且△OCD 与△OAB 的面积之比为1∶4,则点A 的坐标为( )A .(8,4)B .(8,2)C .(4,2)D .(4,8)4.如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,相似比为1∶2,点A 的坐标为(1,0),则E 点的坐标为( )A .(2,0)B .(32,32)C .(2,2)D .(2,2)5.某学习小组在讨论“变化的鱼”时,知道大鱼与小鱼是位似图形(如图所示),则大鱼上的一点(a ,b)对应小鱼上的点的坐标是6.如图,以原点O 为位似中心,把△OAB 放大后得到△OCD ,求△OAB 与△OCD 的相似比.7.如图,在平面直角坐标系中,作出五边形ABCDE 的位似图形,使得新图形A 1B 1C 1D 1E 1与原图形对应线段的比为2∶1,位似中心是坐标原点O.8.在平面直角坐标系中,点C ,D 的坐标分别为C(2,3),D(1,0),现以原点为位似中心,将线段CD 放大得到线段AB.若点D 的对应点B 在x 轴上且OB =2,则点C 的对应点A 的坐标为9.在平面直角坐标系中,点P(m ,n)是线段AB 上一点,以原点O 为位似中心,把△AOB 放大到原来的两倍,则点P 的对应点的坐标为( )A .(2m ,2n)B .(2m ,2n)或(-2m ,-2n)C .(12m ,12n)D .(12m ,12n)或(-12m ,-12n)10.如图,在平面直角坐标系中,已知点A(-3,6)、B(-9,-3),以原点O 为位似中心,相似比为13,把△ABO 缩小,则点A 的对应点A ′的坐标是( )A .(-1,2)B .(-9,18)C .(-9,18)或(9,-18)D .(-1,2)或(1,-2)11.如图,原点O 是△ABC 和△A ′B ′C ′的位似中心,点A(1,0)与A ′(-2,0)是对应点,△ABC 的面积是32,则△A ′B ′C ′的面积是 .12.如图,网格中每个小正方形的边长为1,已知△ABC ,画出△ABC 以坐标原点O 为位似中心的位似图形△A ′B ′C ′,使△A ′B ′C ′在第三象限,与△ABC 的位似比为12,写出三角形各顶点的坐标,位似变换后对应顶点的坐标发生了什么变化?13.如图,正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n ,如图位置依次摆放,已知点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0).(1)写出正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标; (2)正方形A 4A 5B 4C 4四个顶点的坐标.14.如图,在平面直角坐标系xOy 中,△ABC 三个顶点坐标分别为A(-2,4),B(-2,1),C(-5,2).(1)请画出△ABC关于x轴对称的△A1B1C1;(2)将△A1B1C1的三个顶点的横坐标与纵坐标同时乘-2,得到对应的点A2,B2,C2,请画出△A2B2C2;(3)求△A1B1C1与△A2B2C2的面积比,即S△A1B1C1∶S△A2B2C2=1∶4.(不写解答过程,直接写出结果)参考答案:27.3 位似第1课时 位似图形的概念及画法1.D 2.D 3.A 4.A 5.C 6.=47.7.4.解:如图所示. 8.解:图略. 9.解:如图所示. 10.D 11.A 12.B 13.解:(1)位似中心O 的位置如图所示. (2)∵OA OA ′=12,∴△ABC 与△A ′B ′C ′的相似比为1∶2. (3)如图所示.14.解:(1)证明:∵B ′C ′∥BC ,C ′D ′∥CD ,D ′E ′∥DE , ∴AB ′AB =B ′C ′BC =AC ′AC =C ′D ′CD =AD ′AD =D ′E ′DE =AE ′AE, ∠AB ′C ′=∠ABC ,∠AC ′B ′=∠ACB ,∠AC ′D ′=∠ACD ,∠AD ′C ′=∠ADC ,∠AD ′E ′=∠ADE ,∠AE ′D ′=∠AED.∴∠AC ′B ′+∠AC ′D ′=∠ACB +∠ACD , ∠AD ′C ′+∠AD ′E ′=∠ADC +∠ADE , 即∠B ′C ′D ′=∠BCD ,∠C ′D ′E ′=∠CDE. ∵AB ′AB =AE ′AE ,∠B ′AE ′=∠BAE , ∴△B ′AE ′∽△BAE.∴B ′E ′BE =A ′B ′AB ,∠AE ′B ′=∠AEB ,∠AB ′E ′=∠ABE.∴B ′C ′BC =C ′D ′CD =D ′E ′DE =B ′E ′BE ,∠AB ′C ′-∠AB ′E ′=∠ABC -∠ABE , ∠AE ′D ′-∠AE ′B ′=∠AED -∠AEB , 即∠E ′B ′C ′=∠EBC ,∠B ′E ′D ′=∠BED. ∴四边形BCDE 与四边形B ′C ′D ′E ′是相似图形.又∵四边形BCDE 与四边形B ′C ′D ′E ′对应顶点相交于一点A , ∴四边形BCDE 位似于四边形B ′C ′D ′E ′. (2)∵AB ′B ′B =3,∴AB ′AB =34.∴四边形BCDE 与四边形B ′C ′D ′E ′位似之比为43.∵S 四边形BCDE =20,∴S 四边形B ′C ′D ′E ′=20(43)2=20×916=454.第2课时 平面直角坐标系中的位似1.C 2.A 3.C 4.C5. (-0.5a ,-0.5b ).6.解:∵点B 的坐标是(4,0),点D 的坐标是(6,0),∴OB =4,OD =6.∴OB OD =46=23. ∵△OAB 与△OCD 关于点O 位似,∴△OAB 与△OCD 的相似比为23. 7.解:如图所示.8.(4,6)或(-4,-6).9.B10.D11. 6.12.解:△ABC 三个顶点的坐标分别是A (2,2),B (6,4),C (4,6).△A ′B ′C ′三个顶点的坐标分别是A ′(-1,-1),B ′(-3,-2),C ′(-2,-3).观察图形可知,△A ′B ′C ′各顶点的坐标分别是将△ABC 各对应顶点的坐标乘-12. 13.解:(1)正方形A 1A 2B 1C 1,A 2A 3B 2C 2,A 3A 4B 3C 3,…,A n A n +1B n C n 的位似中心的坐标为(0,0).(2)∵点C 1,C 2,C 3,…,C n 在直线y =x 上,点A 1的坐标为(1,0),∴OA 1=A 1C 1=1,OA 2=A 2C 2=2.∴A 3O =A 3C 3=4.∴OA 4=A 4C 4=8.∴OA 5=16.∴A 4(8,0),A 5(16,0),B 4(16,8),C 4(8,8).14.解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.。
27.3 位似一、选择题1.下列说法:①有一个锐角相等的两个直角三角形相似;②顶角相等的两个等腰三角形相似;③任意两个菱形一定相似;④位似图形一定是相似图形;其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①中两个角对应相等,为相似三角形,①对;②顶点相等且为等腰三角形,即底角也相等,是相似三角形,②对;③菱形的角不确定,所以不一定相似,③错;④如果两个图形是位似图形,那么这两个图形必是相似图形,但是相似的两个图形不一定是位似图形,题中所述正确,④对;所以①②④正确,故选C.2.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )A. 2:3B. 3:2C. 4:5D. 4:9【答案】A【解析】解:由位似变换的性质可知,A′B′//AB,A′C′//AC,∴△A′B′C′∽△ABC.与△ABC的面积的比4:9,与△ABC的相似比为2:3,∴OB′OB =23故选:A.3.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,则端点C和D的坐标分别2为( )A. (2,2),(3,2)B. (2,4),(3,1)C. (2,2),(3,1)D. (3,1),(2,2)【答案】C【解析】解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的1后得到线段CD,2∴端点的坐标为:(2,2),(3,1).故选:C.4.如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C位似中心,在x轴的下方作△ABC的位似图形△A′B′C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是( )A.−2aB. 2a−2C. 3−2aD. 2a−3【答案】C【解析】解:设点B′的横坐标为x,则B、C间的横坐标的长度为a−1,B′、C间的横坐标的长度为−x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a−1)=−x+1,解得:x=−2a+3,故选:C5.如图,矩形EFGO的两边在坐标轴上,点O为平面直角坐标系的原点,以y轴上的某一点为位似中心,作位似图形ABCD,且点B,F的坐标分别为(−4,4),(2,1),则位似中心的坐标为( )A.(0,3)B. (0,2.5)C. (0,2)D. (0,1.5)【答案】C【解析】解:如图,连接BF交y轴于P,∵四边形ABCD和四边形EFGO是矩形,点B,F的坐标分别为(−4,4),(2,1),∴点C的坐标为(0,4),点G的坐标为(0,1),∴CG=3,∵BC//GF,∴GPPC =GFBC=12,∴GP=1,PC=2,∴点P的坐标为(0,2),故选:C.6.如图,在平面直角坐标系xOy中,点A的坐标为(−1,2),AB⊥x轴于点B.以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,则点A1的坐标为( )A.(−2,4)B. (−1,1)2C. (2,−4)D. (2,4)【答案】A【解析】解:∵点A的坐标为(−1,2),以原点O为位似中心,将△OAB放大为原来的2倍,得到△OA1B1,且点A1在第二象限,∴点A1的坐标为(−2,4).故选:A.7.如图,△ABO与△A′B′O是位似图形,其中AB//A′B′,那么A′B′的长y与AB的长x之间函数关系的图象大致是( )A.B.C.D.【答案】C【解析】解:∵AB//A′B′,∴△OAB∽△OA′B′,∴ABA′B′=3612,即xy=3∴y=13x(x>0),是正比例函数,图象为不包括原点的射线.故选:C.8.在平面直角坐标系中,点A(6,3),以原点O为位似中心,在第一象限内把线段OA缩小为原来的13得到线段OC,则点C的坐标为( )A. (2,1)B. (2,0)C. (3,3)D. (3,1)【答案】A【解析】解:以原点O为位似中心,在第一象限内将其缩小为原来的13,则点A的对应点C的坐标为(6×13,3×13),即(2,1),故选:A.9.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,点A的坐标为(1,0),则E点的坐标为( )A. (2,0)B. (1,1)C. (√2,√2)D. (2,2)【答案】D【解析】解:∵四边形OABC是正方形,点A的坐标为(1,0),∴点B的坐标为(1,1),∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:2,∴E点的坐标为(2,2),故选:D.10.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上小树的高度是( )A. 50cmB. 500cmC. 60cmD. 600cm【答案】C【解析】解:1.5m=150cm,150+30=180cm.设屏幕上小树的高度是x米.则10:x=1:6;∴x=60cm.故选C.二、填空题11.已知在平面直角坐标系中,点A(−3,−1)、B(−2,−4)、C(−6,−5),以原点为位似中心将△ABC缩小,位似比为1:2,则点B的对应点的坐标为______ .【答案】(1,2)或(−1,−2)【解析】解:∵点B的坐标为(−2,−4),以原点为位似中心将△ABC缩小,位似比为1:2,∴点B的对应点的坐标为(1,2)或(−1,−2),故答案为:(1,2)或(−1,−2).12.如图,△ABO三个顶点的坐标分别为A(2,4),B(6,0),O(0,0),以原点O为位似中心,把,可以得到△A′B′O,已知点B′的这个三角形缩小为原来的12坐标是(3,0),则点A′的坐标是______.【答案】(1,2)【解析】解:∵点A 的坐标为(2,4),以原点O 为位似中心,把这个三角形缩小为原来的12, ∴点A′的坐标是(2×12,4×12),即(1,2),故答案为:(1,2).13. 如图,在直角坐标系中,每个小方格的边长均为1,△AOB 与△A′OB′是以原点O 为位似中心的位似图形,且相似比为3:2,点A ,B 都在格点上,则点B′的坐标是______. 【答案】(−2,43)【解析】解:由题意得:△A′OB′与△AOB 的相似比为2:3,又∵B(3,−2)∴B′的坐标是[3×(−23),−2×(−23)],即B′的坐标是(−2,43);故答案为:(−2,43).14. 已知△ABC 是正三角形,正方形EFPN 的顶点E 、F 在边AB 上,顶点N 在边AC 上.(1)如图,在正三角形ABC 及其内部,以点A 为位似中心,画出正方形EFPN 的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面积最大(不写画法,但要保留画图痕迹);(2)若正三角形ABC 的边长为3+2√3,则(1)中画出的正方形E′F′P′N′的边长为______.【答案】3【解析】解:(1)如图①,正方形E′F′P′N′即为所求.(2)设正方形E′F′P′N′的边长为x,∵△ABC为正三角形,∴AE′=BF′=√33x.∵E′F′+AE′+BF′=AB,∴x+√33x+√33x=3+2√3,∴解得:x=3,故答案为:3.15.将一个三角形经过放大后得到另一个三角形,如果所得三角形在原三角形的外部,这两个三角形各对应边平行且距离都相等,那么我们把这样的两个三角形叫做“等距三角形”,它们对应边之间的距离叫做“等距”.如果两个等边三角形是“等距三角形”,它们的“等距”是1,那么它们周长的差是______.【答案】6√3【解析】解:设等边三角形△ABC和△DEF的边长分别为a、b,点O为位似中心,作OH⊥BC交EF于G,如图,根据题意,△ABC与△DEF的位似图形,点O、E、B共线,在Rt△OEG中,∠OEG=30∘,EG=12b,∴OG=EG√3=√36b,同理得到OH=√36a,而OH−OG=1,∴√36a−√36b=1,∴a−b=2√3,∴3(a−b)=6√3.故答案为6√3.三、解答题16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(−2,1)、B(−3,2)、C(−1,4).(1)以原点O为位似中心,在第二象限内画出将△ABC放大为原来的2倍后的△A1B1C1.(2)画出△ABC绕C点逆时针旋转90∘后得到的△A2B2C.【答案】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C为所作;17.在12×12的正方形网格中,△TAB的顶点坐标为T(1,1)、A(2,3)、B(4,2)(1)以原点(0,0)为位似中心,相似比2:1在位似中心的同侧将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标______ .【答案】(3a−2,3b−2)【解析】解:(1)如图所示:,△TA′B′即为所求,A′(4,7),B′(10,4);(2)变化后点C的对应点C′的坐标为:C′(3a−2,3b−2).故答案为:(3a−2,3b−2).。
人教版九年级数学下册27.2.3 相似三角形应用举例同步测试附解析学生版一、单选题(共10题;共30分)1.(3分)如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影子长DE=1.8m,窗户下沿到地面的距离BC=1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m2.(3分)如图,放映幻灯片时通过光源把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20cm,到屏幕的距离为60cm,且幻灯片中的图形的高度为6cm,则屏幕上图形的高度为()A.6cm B.12cm C.18cm D.24cm3.(3分)路边有一根电线杆AB和一块长方形广告牌,有一天小明突然发现在太阳光照射下,电线杆顶端A的影子刚好落在长方形广告牌的上边中点G处,而长方形广告牌的影子刚好落在地面上E 点(如图),已知BC=5米,长方形广告牌的长HF=4米,高HC=3米,DE=4米,则电线杆AB的高度是()A.6.75米B.7.75米C.8.25米D.10.75米4.(3分)如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米,若灯泡距离地面3米,则地面上阴影部分的面积为()A.0.36 π平方米B.0. 81 π平方米C.2 π平方米D.3.24 π平方米5.(3分)如图,为了估计某一条河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R,如果QS = 60m,ST =120m,QR=80m,则这条河的宽度PQ为()A.40m B.120m C.60m D.180m6.(3分)如图,路灯距地面8m,身高 1.6m的小明从点A处沿AO所在的直线行走14m到点B时,人影长度()A.变长 3.5m B.变长 2.5m C.变短 3.5m D.变短 2.5m7.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯A的高度AB等于()A.4.5 m B.6 m C.7.2 m D.8 m8.(3分)如图,正方形ABCD的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠DPE=90°,PE交AB于点E,设BP=x,BE=y,则y关于x的函数图象大致是()A.B.C.D.9.(3分)如图,小明晚上由路灯A下的点B处走到点C处时,测得自身影子CD的长为1米,他继续往前走3米到达点E处(即CE=3米),测得自己影子EF的长为2米,已知小明的身高是1.5米,那么路灯A的高度AB是()A.4.5米B.6米C.7.2米D.8米10.(3分)某天同时同地,甲同学测得1m的测竿在地面上影长为0.8m,乙同学测得国旗旗杆在地面上的影长为9.6m,则国旗旗杆的长为()A.10m B.12mC.13m D.15m二、填空题(共5题;共15分)11.(3分)如图,▱ABCD中,E是边AD的中点,BE交对角线AC于点F,那么S∠AFB :S四边形FEDC的值为12.(3分)如图,身高1.8米的轩轩从一盏路灯下的B处向前走了4米到达点C处时,发现自己在地面上的影子CE长与他的身高一样,则路灯的高AB为米.13.(3分)如图,小明为了测量高楼MN的高度,在离点N18米的点A处放了一个平面镜,小明沿NA方向后退1.5米到点C ,此时从镜子中恰好看到楼顶的点M,已知小明的眼睛(点B)到地面的高度BC是1.6米,则高楼MN的高度是.14.(3分)如图,为了测量一栋楼的高度,王青同学在她脚下放了一面镜子,然后向后退,直到她刚好在镜子里看到楼的顶部,如果王青身高1.55m,她估计自己眼睛距地面1.50m.同时量得LM=30cm,MS=2m,则这栋楼高m.15.(3分)如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若幻灯片到光源的距离为20 cm,到屏幕的距离为120 cm,且幻灯片中的图形的高度为8 cm,则屏幕上图形的高度为cm.三、解答题(共8题;共55分)16.(7分)如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个点C,从点C不经过池塘可以直接到达点A和B,连结AC并延长到点D,使CD= 12AC,连结BC并延长到点E,使CE= 12BC,连结DE.量得DE的长为15米,求池塘两端A,B的距离.17.(7分)如图,某中学两座教学楼中间有个路灯,甲、乙两个人分别在楼上观察路灯顶端,视线所及如图①所示。
27.3位似同步习题一.选择题1.如图中的两个三角形是位似图形,点M的坐标为(3,2),则它们位似中心的坐标是()A.(0,2)B.(0,3)C.(2,﹣1)D.(2,3 )2.已知两点A(4,6)、B(6,2),以原点O为位似中心,将△OAB缩小为原来的,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)3.如图,若△ABC与△A'B'C'是位似图形,则位似中心的坐标为()A.(1,﹣1)B.(1,1)C.(2,0)D.(0,﹣1)4.在平面直角坐标系中,点A,B的坐标分别是(4,2),B(5,0),以O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为()A.(2,1)B.(2,﹣1)C.(﹣2,﹣1)D.(2,1)或(﹣2,﹣1)5.如图,△ABC是△DEF以点O为位似中心经过位似变换得到的,若△ABC与△DEF的周长比为2:3,则OA与OD之比为()A.2:3B.3:2C.2:5D.3:56.如图,点A(0,4),B(3,4),以原点O为位似中心,把线段AB缩短为原来的一半,得到线段CD,其中点C与点A对应,点D与点B对应,则点D的横坐标为()A.2B.2或﹣2C.D.或﹣7.已知线段AB的两个端点的坐标分别是A(m,m),B(2n,n),以原点O为位似中心,相似比为,把线段AB缩小,则经过位似变换后,A的对应点A′的坐标是()A.(m,n)B.(﹣m,﹣n)C.(m,m)或(﹣m,﹣m)D.(n,n)或(﹣n,﹣n)8.如图,四边形ABCD与四边形GBEF是位似图形,则位似中心是()A.点A B.点B C.点F D.点D9.下列说法中正确的有()①位似图形都相似;②两个等腰三角形一定相似;③两个相似多边形的面积比是2:3,则周长比为4:9;④若一个矩形的四边分别比另一个矩形的四边长2,那么这两个矩形一定相似.A.1个B.2个C.3个D.4个10.在如图所示的网格中,以点O为位似中心,四边形ABCD的位似图形是()A.四边形NPMQ B.四边形NPMR C.四边形NHMQ D.四边形NHMR 二.填空题11.在平面直角坐标系中,△ABC和△A1B1C1的相似比等于,并且是关于原点O的位似图形,若点A的坐标为(3,6),则其对应点A1的坐标是.12.如图,已知▱ABCD,以B为位似中心,作▱ABCD的位似图形▱EBFG,位似图形与原图形的位似比为,连结AG,DG.若▱ABCD的面积为24,则△ADG的面积为.13.在平面直角坐标系中,将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,已知A(2,3),则点A1的坐标是.14.如图,已知矩形ABCD和矩形BEFG是位似图形,点O是位似中心,若点D的坐标为(1,2),点F的坐标为(4,4),则点G的坐标是.15.如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,若点A(2,2),B(3,4),C(6,1),B'(6,8),则△A'B'C'的面积为.三.解答题16.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,﹣2),B(2,﹣1),C(4,﹣3).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,在网格中画出△A1B1C1的位似图形△A2B2C2,使△A2B2C2与△A1B1C1的相似比为2:1.17.如图,正方形网格中,每个小正方形的边长都是一个单位长度,△ABC的顶点都在格点上.(1)以点O为位似中心,画出△ABC的位似图形△A1B1C1,使△ABC与△A1B1C1的位似比为1:2.(2)以点O为坐标原点,建立平面直角坐标系,若点M(a,b)在线段AC上,请直接写出点M经过(1)的位似变换后的对应点M'的坐标.18.如图,在正方形格中,每一个小正方形的边长都为1,△ABC的顶点分别为A(2,3),B(2,1),C(5,4).(1)写出△ABC的外心P的坐标.(2)以(1)中的外心P为位似中心,按位似比2:1在位似中心的同侧将△ABC放大为△A′B′C′,放大后点A、B、C的对应点分别为A′、B′,C′,请在图中画出△ABC.参考答案一.选择题1.解:如图,点O为两个三角形的位似中心,∵点M的坐标为(3,2),∴位似中心O的坐标为(0,2),故选:A.2.解:以原点O为位似中心,将△OAB缩小为原来的,点A的坐标为(4,6),则则点A的对应点C的坐标为(4×,6×),即(2,3),故选:A.3.解:延长A′A、B′B交于点P,则点P(1,﹣1)为位似中心,故选:A.4.解:点A为(4,2),以O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故选:D.5.解:∵△ABC是△DEF以点O为位似中心经过位似变换得到的,∴AC∥FD,△ABC∽△DEF,∵△ABC与△DEF的周长比为2:3,∴=,∵AC∥FD,∴△AOC∽△DOF,∴==,故选:A.6.解:以原点O为位似中心,把线段AB缩短为原来的一半,点B的横坐标为3,∴点B的对应点D的横坐标为3×或3×(﹣),即或﹣,故选:D.7.解:∵以原点O为位似中心,相似比为,把线段AB缩小,A(m,m),∴A的对应点A′的坐标(m,m)或(﹣m,﹣m),故选:C.8.解:∵四边形ABCD与四边形GBEF是位似图形,∴点A与点G是对应点,点C与点E是对应点,∵AG、CE交于点B,∴位似中心的点B,故选:B.9.解:①位似图形都相似,本选项说法正确;②两个等腰三角形不一定相似,本选项说法错误;③两个相似多边形的面积比是2:3,则周长比为:,本选项说法错误;④若一个矩形的四边分别比另一个矩形的四边长2,那么这两个矩形对应边的比不一定相等,两个矩形不一定一定相似,本选项说法错误;故选:A.10.解:∵以点O为位似中心,∴点C对应点M,设网格中每个小方格的边长为1,则OC==,OM==2,OD=,OB==,OA ==,OR==,OQ=2,OP==2,OH==3,ON==2,∵==2,∴点D对应点Q,点B对应点P,点A对应点N,∴以点O为位似中心,四边形ABCD的位似图形是四边形NPMQ,故选:A.二.填空题11.解:∵△ABC和△A1B1C1的相似比等于,并且是关于原点O的位似图形,点A的坐标为(3,6),∴点A1的坐标是(3×3,6×3)或(﹣3×3,﹣6×3),即(9,18)或(﹣9,﹣18),故答案为:(9,18)或(﹣9,﹣18).12.解:连接BG,∵▱ABCD和▱EBFG是以B为位似中心的位似图形,∴点D、G、B在同一条直线上,EG∥AD,∵四边形ABCD是平行四边形,面积为24,∴△ADB的面积为12,∵EG∥AD,∴==,∴=,∴△ADG的面积=12×=4,故答案为:4.13.解:∵将△AOB以点O为位似中心,为位似比作位似变换,得到△A1OB1,A(2,3),∴点A1的坐标是:(×2,×3),即A1(,2).故答案为:(,2).14.解:∵矩形ABCD,点D的坐标为(1,2),∴AD=BC=2,∵矩形BEFG,点F的坐标为(4,4),∴EF=BG=4,∴===,∴OB=2,故点G的坐标是(2,4).故答案为:(2,4).15.解:∵△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,点A(2,2),B(3,4),C(6,1),B'(6,8),∴A′(4,4),C′(12,2),∴△A'B'C'的面积为:6×8﹣×2×4﹣×6×6﹣×2×8=18.故答案为:18.三.解答题16.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求.17.解:(1)如图,△A1B1C1为所作;(2)M'(﹣2a,﹣2b).18.解:(1)如图.P点坐标为(4,2);故答案为(4,2);(2)如图,△A′B′C′为所作.。
人教版数学九年级下册第二十七章相似27.3位似同步练习一、单选题(共5题;共10分)1.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为0.5,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣2,1)或(2,﹣1)D.(﹣8,4)或(8,﹣4)2.下列相似图形不是位似图形的是()A. B.C. D.3.已知,任取一点,连接AO,BO,CO,并取它们的中点D,E,F,得,则下列说法正确的个数是()①与是位似图形;②与是相似图形;③与的周长比为;④与的面积比为.A.1B.2C.3D.44.观察下图,在下列四种图形变换中,该图案不包含的变换是()A.平移B.轴对称C.旋转D.位似5.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点,,.下列说法正确的是()A.△与△ABC是位似图形,位似中心是点(1,0)B.△与△ABC是位似图形,位似中心是点(0,0)C.△与△ABC是相似图形,但不是位似图形D.△与△ABC不是相似图形二、填空题(共6题;共6分)6.如图,已知线段AB两个端点的坐标分别为A(4,6),B(8,4),以原点O为位似中心,在第一象限内将线段AB缩小为原来的一半后得到线段CD,则端点D坐标为________.7.在平面直角坐标系中,将以点为位似中心,为位似比作位似变换,得到.已知,则点的坐标是________.8.在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.9.已知:如图,,,以原点O为位似中心,相似比,把在点O另一侧缩小,则点E的对应点的坐标为________.10.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为________.11.如图,平面直角坐标系中有正方形和正方形,若点和点的坐标分别为,,则两个正方形的位似中心的坐标是________.三、作图题(共3题;共27分)12.如图,已知△ABC在平面直角坐标系内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是________(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1(3)求四边形的面积.13.如图,图中的小方格都是边长为1的正方形,△ABC与△A′B′C′是关于点O为位似中心的位似图形,它们的顶点都在小正方形的格点上.(1)画出位似中心O;(2)求出△ABC与△A′B′C′的相似比.14.如图,在网格图中,每个小正方形边长均为,点和四边形的顶点均在小正方形的顶点上.(1)以为位似中心,在网格图中作四边形和四边形位似,且位似比为;(2)根据(1)填空:________.四、综合题(共2题;共25分)15.请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y 的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似16.(1)在正方形方格纸中,我们把顶点均在“格点”上的三角形称为“格点三角形”,如图△ABC是一个格点三角形,点A的坐标为(-2,2).(1)点B的坐标为________,△ABC的面积为________;(2)在所给的方格纸中,请你以原点O为位似中心,将△ABC缩小为原来的一半(仅用直尺);(3)在(2)中,若P(a,b)为线段AC上的任一点,则缩小后点P的对应点P1的坐标为________.(4)按要求作图,不要求写作法,但要保留作图痕迹.我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在平行四边形ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.答案解析部分一、单选题1.【答案】C2.【答案】D3.【答案】C4.【答案】A5.【答案】B二、填空题6.【答案】(4,2)7.【答案】.8.【答案】9.【答案】(3,-1)10.【答案】(3,2)11.【答案】或三、作图题12.【答案】(1)(2,-2)(2)解:如图所示,以B为位似中心,画出,使与位似,且位似比为2:1,(3)解:四边形的面积是13.【答案】(1)解:(2)解:∵顶点都在格点上,B′C′=2,BC=,∴BC:B′C′=1:2∴△ABC与△A′B′C′的相似比为1:2.14.【答案】(1)解:如下图所示,四边形即为所求.(2)1:1四、综合题15.【答案】(1)解:四边形AXYZ是菱形.证明:∵ZY∥AC,YX∥ZA,∴四边形AXYZ是平行四边形.∵ZA=YZ,∴平行四边形AXYZ是菱形(2)证明:∵CD=CB,∴∠1=∠3.∵ZY∥AC,∴∠1=∠2.∴∠2=∠3.∴YB=YZ.∵四边形AXYZ是菱形,∴AX=XY=YZ.∴AX=BY=XY(3)D16.【答案】(1);4(2)解:如图,连接OA取,OA中点记作点,用同样的方法找到点和点,就得到缩小后的;(3)(4)解:①如图,连接AC、BD交于点O,连接EB交AC于点G,连接DG并延长交CB于点F,F即为所求,根据平行四边形的性质,O是BD中点,∴CO是的中线,∵E是CD中点,∴BE也是的中线,根据三条中线交于一点,所以连接DG并延长,得到的最后一条中线,则F是BC中点;②如图,分别过点B、C作的矩形对角线BD,的矩形对角线CE,,,则直线BD与CE的交点F就是的高所在直线的交点,连接AF角BC于点H,线段AH就是所求的的高.。
第二十七章 相似27.3位似基础导练1. 下列说法不正确的是 ( )A .位似图形一定是相似图形B. 相似图形不一定是位似图形C. 位似图形上任意一对对应点到位似中心的距离之比等于位似比D. 位似图形中每组对应点所在的直线必相互平行2. 下列说法正确的是 ( )A. 分别在△ABC 的边AB ,AC 的反向延长线上取点D ,E ,使DE ∥BC ,则△ADE 是△ABC 放大后的图形B. 两位似图形的面积之比等于位似比C. 位似多边形中对应对角线之比等于位似比D. 位似图形的周长之比等于位似比的平方3. 如图,点D E F ,,分别是()ABC AB AC >△各边的中点,下列说法中,错误..的是( )A. AD 平分BAC ∠B. 12EF BC = C. EF 与AD 互相平分 D.△DEF 是△ABC 的位似图形4. 用作位似形的方法,可以将一个图形放大或缩小,位似中心 ( )A. 只能选在原图形的外部B. 只能选在原图形的内部C. 只能选在原图形的边上 D .可以选择任意位置5. 将一个菱形放在2倍的放大镜下,则下列说法中不正确的是 ( )A .菱形的边长扩大到原来的2倍B .菱形的角的度数不变C .菱形的面积扩大到原来的2倍D .菱形的面积扩大到原来的4倍6.把一个正多边形放大到原来的2.5倍,则原图与新图的相似比为________.7. 如果两个位似图形的对应线段长分别为3cm 和5cm ,且较小图形周长为30cm ,则较大图形周长为 .8.如图,DC ∥AB ,OA =2OC ,则OCD △与OAB △的位似比是________.能力提升9.在如图的方格纸中(每个小方格的边长都是1个单位)有一点O 和ABC △.(1)请以点O 为位似中心,把ABC △缩小为原来的一半(不改变方向),得到A B C '''△.(2)请用适当的方式描述A B C '''△的顶点A ',B ',C '的位置.10.如图,四边形ABCD 和四边形A′B′C′D′ 位似,位似比12k =,四边形A′B′C′D′和四边形A″B″C″D″位似,位似比21k =.四边形A″B″C″D″和四边形ABCD 是位似图形吗?位似比是多少?参考答案1.D 2.C 3.A 4.D 5.C 6.2︰5 7.50cm 8.1︰2 9.略10.是位似图形,位似比为12.。
3 位似
专题一 开放探究题
1.在如图所示的方格纸中(每个小方格的边长都是1个单位)有一点O 和△ABC.
(1)请以点O 为位似中心,把△ABC 缩小为原来的一半(不改变方向),得到△C B A ''';
(2)请用适当的方式描述△C B A '''的顶点C B A ''',,的位置.
专题二 实际应用题
2.如图,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8cm ,则投影三角形的对应边长为( )
A.8 cm
B.20 cm
C.3.2 cm
D.10 cm
3.如图,印刷一张矩形的张贴广告,它的印刷面积是32 dm 2,两边空白各0.5 dm ,上下空白各1 dm ,
设印刷部分从上到下长是x dm ,四周空白的面积为S dm 2.
(1)求S 与x 的关系式;
(2)当要求四周空白处的面积为18 dm 2时,求用来印刷这张广告的纸张的长和宽各是多少?
(3)在(2)问的条件下,内外两个矩形是位似图形吗?为什么?
专题三 一题多变题
4.已知五边形ABCDE 与五边形A′B′C′D′E′是位似图形,O 是位似中心,OD ∶OD ′=2∶3,如图所示,求S 五边形ABCDE 与S 五边形A′B′C′D′E′之比是多少?
(1)一变:若已知条件不变,五边形ABCDE 的周长为32 cm ,求五边形A′B′C′D′E′的周长;
(2)二变:已知条件不变,试判断△ODE 与△OD′E′是位似图形吗?
专题四 阅读理解题
5.阅读下面材料:“如果两个三角形不仅是相似三角形,而且每组对应点所在的直线都经过同一个点,那么这两个三角形叫做位似三角形,它们的相似比又称为位似比,这个点叫做位似中心.利用三角形的位似可以将一个三角形缩小或放大.”
(1)选择:如图1,点O 是等边△PQR 的中心,P′、 Q′、R′分别是OP 、OQ 、OR 的中点,则△P′Q′R ′与△PQR 是位似三角形,此时,△P′Q′R′与△PQR 的位似比、位似中心分别为( )
A .2,点P
B .12 ,点P
C .2,点O
D .12
,点O (2)如图2,用下面的方法可以画△AOB 的内接等边三角形,阅读后证明相应的问题的画法: ①在△AOB 内画等边△CDE ,使点C 在OA 上,点D 在OB 上,
②连结OE 并延长交AB 于点E ′,过点E ′作E ′C′∥EC ,交OA 于点C′,过点E ′作E ′D′∥ED 交OB 于点D′;
③连结C′D′,则△C′D′E′是△AOB 的内接三角形,求证:△C′D′E′是等边三角形.
【知识要点】
1.两个多边形不仅相似,而且对应顶点的连线相交于一点,对应边互相平行,这样的两个图形叫做位似图形.
2.在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或者-k .
【温馨提示】
1.位似图形的位似中心可以在任何位置.
2.解决位似图形中相关图形的周长、面积问题时,一般地首先要确定位似图形的相似比,然后再根据相似形的性质解决问题.
【方法技巧】
1.利用位似,可以将一个图形放大或缩小.
2.判定两个图形是位似图形,必须同时满足两个条件:(1)两个图形相似;(2)两个图形所有对应顶点所在直线相交于同一点.
3.在数学上,往往先在一个已知图形中通过探究找出一个正确的结论,再将图形进行适当变换,然后探究这个结论在变换后的图形中是否成立,最后利用发现的一般规律去指导并解决问题,这种研究问题的方法是训练发散思维与创新意识的有效途径.
参考答案
1. 解:(1)按位似作图在O 点与△ABC 同侧把△ABC 缩小一半,得到△C B A ''';第(2)问是一
个开放性问题,对描述△C B A '''的顶点C B A ''',,的位置的方式不确定,如果建立直角坐标系来描述C B A ''',,的位置,假设以O 为坐标原点,建立平面直角坐标系.那么A′的坐标为(-4,
1),B′的坐标为(-5,-1),C′的坐标为(-2,-1).
2.B 【解析】8:投影三角形的对应边长=2:5.
3.解:(1)根据题意,得S =32(2)(1)32x x ++-=x +x 64+2. (2)根据题意,得x +x
64+2=18,整理,得x 2-16x +64=0,∴(x -8)2=0,∴x =8,∴x +2=10.所以这张广告纸的长为10 dm,宽为8
32+2×0.5=5(dm). (3)内外两个矩形是位似图形,理由如下:因为内外两矩形的长,宽的比都为2, ∴4
5=''=''=''=''A D DA D C CD C B BC B A AB . ∵矩形的各角都为90°,所以矩形ABCD∽矩形A′B′C′D′.
∵AC 和BD ,A′C′和B′D′都相交于O 点,
∴矩形ABCD 与矩形A′B′C′D′是位似图形.
4.解:∵五边形ABCDE 与五边形A′B′C′D′E′是位似图形,OD :OD′=2:3,
∴ABCDE
A B C D E S S '''''五边形五边形=2OD OD ⎛⎫ ⎪⎝⎭'=2
23⎛⎫ ⎪⎝⎭=49. (1)由题意可知五边形ABCDE 与五边形A′B′C′D′E′的位似比为′OD OD =23
, ∴ABCDE A B C D E C C '''''五边形五边形=OD OD '=23
. ∵C 五边形ABCDE =32cm ,∴C 五边形A′B′C′D′E′=C 五边形ABCDE ×32=32×32
=48(cm ). (2)∵五边形ABCDE 与五边形A 'B 'C 'D 'E '是位似图形,∴
OD OD '=OE DE OE D E '=''=23
,• ∴△ODE∽△OD′E′.由题图可知△ODE 与△OD′E′的对应点的连线都经过点O ,
∴△ODE 与△OD′E′是位似图形.
5.解:(1)由位似的定义,观察图l 知:点O 是位似中心,根据三角形中位线的性质可推出位似比为1/2,故选D .
(2)证明:∵EC∥E′C′,∴CE OE C E O E =''''
,∠CEO=∠C′E′O . ∵ED∥E′D′,∴ED OE E D O E ='''',∠DEO=∠D′E′O ′, 故′′′′D
E ED E C CE =,∠CED=∠C′E′D′. ∵△CDE 是等边三角形,∴CE=DE ,∠CED =60°.
∴C′E′=E′D′,∠C′E′D′=60°,∴△C′D′E′是等边三角形.。