并完成下表:
a夹 角b的 的范正围负0 90
90
90 180
3、研究数量积的几何意义
(1)给出向量投影的概念
(2)问题6:数量积的几何意义是什么?
4.研究数量积的物理意义
问题7:(1)功的数学本质是什么?
(2)尝试练习
一物体质量是10千克, 分别做以下运动, 求重力 做功 的大小。
5.已知a2
2
1, b
2, (a
b)
a
0, 求a与b的夹角.
6.已知a+b c 0,| a | 3,| b | 5,| c | 7,
求a与b的夹角.
1.已知a,b均为单位向量,它们的夹角为60 , 求|a 3b | 2.已知a,b满足:| a | 1,| b | 2,| a b | 2, 求|a b | 3.已知平面上三点A, B,C满足:| AB | 2,
ab
|
a
||
b
|
cos
其中θ是 a 与 b 的夹角,| b | cos(| a | cos) 叫做向量 b 在 a
方向上( 在 方向上)的投影.并且规定,零向量与任一向量
的数量积为a 零,b 即
。
a0 0
0时 b 在 a 方向上的射影| b | .是为锐角时,
b
θ O
B
| OB1 || b | • cos , b 在 a 方向上的射影是正数
①、在水平面上位移为10米; ②、竖直下降10米;; ③、竖直向上提升10米 ④、沿倾角为30度的斜面向上运动10米;
S
①、在水平面上位移为10米;
G
W 0
②、竖直下降10米;
S G
WGS
③、竖直向上提升10米;