积(或内积),记作a b ,即
a b a b cos .
规定:零向量与任一向量的数量积为 0 .
注:
(1) 两个向量的数量积是一个数量,这数
量的大小与两个向量的长度及其夹角有
关.
(2)前面所说的力所做的功,就是力
此 点
F 与其作用下物体产生的位移 s 的数 很
重
量积 F s .
要
(3)两个向量a 与 b 的数量积
D
求:(1)AD • BC
(2) AB • CD
60
A
C B
(3) AB • DA
4. 向量的投影的概念
(1) 定 义 : 如 图 , 设OA a , OB b , AOB ,
过 点 B 作 BB1 垂 直 于 直 线OA , 垂 足 为B1 , 则
OB1 b cos .
我 们 把 b cos 叫 做 向 量b 在 a 方 向 上 的 投 影.
2 则a • b ( ) 2、 | a | 12,| b | 9, a • b 54 2,
则向量a与向量b的夹角 ( )
例2 : 如图:边长为 2的正三角形ABC中,
设BC a,CA b
C
求a • b 的值。
A
B
练习:在平行四边形ABCD中,
已知|AB|=4,|AD|=3,DAB 60
特别地,a 2 a 2 , 也就是 a
2
a.
(4) cos a b . (5) a b a b .
ab
• 6. 进一步思考:
(1) 在实数中,如果 a b 0 , 且 a 0 , 那么, 一定有 b 0.这一结论对于向量,还 成立吗?
若 a b 0 , 且 a 0 , 是否一定有 b 0 .