平面向量数量积的坐标表示、模、夹角PPT优秀课件3
- 格式:ppt
- 大小:298.00 KB
- 文档页数:36
2.4.2平面向量数量积的坐标表示、模、夹角学习目标1.理解两个向量数量积坐标表示的推导过程,能运用数量积的坐标表示进行向量数量积的运算.2.能根据向量的坐标计算向量的模,并推导平面内两点间的距离公式.3.能根据向量的坐标求向量的夹角及判定两个向量垂直.知识点一平面向量数量积的坐标表示设非零向量a=(x1,y1),b=(x2,y2),a与b的夹角为θ.知识点二平面向量模的坐标形式及两点间的距离公式知识点三平面向量夹角的坐标表示cos θ=a·b|a||b|=x1x2+y1y2x21+y21x22+y22.思考若两个非零向量的夹角满足cos θ<0,则两向量的夹角θ一定是钝角吗?答案不一定,当cos θ<0时,两向量的夹角θ可能是钝角,也可能是180°.1.若a=(x1,y1),b=(x2,y2),则a⊥b⇔x1y2-x2y1=0.(×)2.若两个非零向量的夹角θ满足cos θ>0,则两向量的夹角θ一定是锐角.(×)提示当两向量同向共线时,cos θ=1>0,但夹角θ=0,不是锐角.3.两个非零向量a=(x1,y1),b=(x2,y2),满足x1y2-x2y1=0,则向量a与b的夹角为0°.(×)题型一数量积的坐标运算例1(1)已知a=(2,-1),b=(1,-1),则(a+2b)·(a-3b)等于()A.10 B.-10C.3 D.-3考点平面向量数量积的坐标表示与应用题点坐标形式下的数量积运算答案 B解析 a +2b =(4,-3),a -3b =(-1,2),所以(a +2b )·(a -3b )=4×(-1)+(-3)×2=-10. (2)如图所示,在矩形ABCD 中,AB =2,BC =2,点E 在边CD 上,且DE →=2EC →,则AE →·BE →的值是________.考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案329解析 以A 为原点,AB 所在直线为x 轴、AD 所在直线为y 轴建立如图所示平面直角坐标系.∵AB =2,BC =2,∴A (0,0),B (2,0),C (2,2),D (0,2), ∵点E 在边CD 上,且DE →=2EC →,∴E ⎝⎛⎭⎫223,2.∴AE →=⎝⎛⎭⎫223,2,BE →=⎝⎛⎭⎫-23,2, ∴AE →·BE →=-49+4=329.反思感悟 数量积坐标运算的技巧(1)进行数量积运算时,要正确使用公式a·b =x 1x 2+y 1y 2,并能灵活运用以下几个关系: ①|a |2=a ·a .②(a +b )·(a -b )=|a |2-|b |2. ③(a +b )2=|a |2+2a ·b +|b |2.(2)在平面几何图形中求数量积,若几何图形规则易建系,可先建立坐标系,写出相关向量的坐标,再求数量积.跟踪训练1 向量a =(1,-1),b =(-1,2),则(2a +b )·a 等于( ) A .-1 B .0 C .1 D .2考点 平面向量数量积的坐标表示与应用 题点 坐标形式下的数量积运算 答案 C解析 因为a =(1,-1),b =(-1,2),所以2a +b =2(1,-1)+(-1,2)=(1,0),则(2a +b )·a =(1,0)·(1,-1)=1,故选C. 题型二 平面向量的模例2 已知平面向量a =(3,5),b =(-2,1). (1)求a -2b 及其模的大小; (2)若c =a -(a ·b )b ,求|c |.考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 解 (1)∵a =(3,5),b =(-2,1),∴a -2b =(3,5)-2(-2,1)=(3+4,5-2)=(7,3), ∴|a -2b |=72+32=58.(2)∵a ·b =-6+5=-1, ∴c =a +b =(1,6), ∴|c |=12+62=37.反思感悟 求向量a =(x ,y )的模的常见思路及方法(1)求模问题一般转化为求模的平方,与向量数量积联系要灵活应用公式a 2=|a|2=x 2+y 2,求模时,勿忘记开方. (2)a ·a =a 2=|a |2或|a |=a 2=x 2+y 2,此性质可用来求向量的模,可以实现实数运算与向量运算的相互转化.跟踪训练2 已知向量a =(2,1),a·b =10,|a +b |=52,则|b |等于( ) A. 5 B.10 C .5 D .25 考点 平面向量模的坐标表示与应用 题点 利用坐标求向量的模 答案 C解析 ∵a =(2,1),∴a 2=5, 又|a +b |=52,∴(a +b )2=50, 即a 2+2a ·b +b 2=50,∴5+2×10+b 2=50,∴b 2=25,∴|b |=5.题型三 平面向量的夹角与垂直问题命题角度1 向量的夹角例3 已知点A (3,0),B (0,3),C (cos α,sin α),O (0,0),若|OA →+OC →|=13,α∈(0,π),则OB →,OC →的夹角为( ) A.π2 B.π4 C.π3 D.π6考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 D解析 因为|OA →+OC →|2=(OA →+OC →)2=OA →2+2OA →·OC →+OC →2=9+6cos α+1=13, 所以cos α=12,因为α∈(0,π),所以α=π3,所以C ⎝⎛⎭⎫12,32,所以cos 〈OB →,OC →〉=OB →·OC →|OB →||OC →|=3×323×1=32,因为0≤〈OB →,OC →〉≤π,所以〈OB →,OC →〉=π6,所以OB →,OC →的夹角为π6,故选D.反思感悟 利用向量的数量积求两向量夹角的一般步骤 (1)利用向量的坐标求出这两个向量的数量积. (2)利用|a |=x 2+y 2求两向量的模.(3)代入夹角公式求cos θ,并根据θ的范围确定θ的值.跟踪训练3 已知a =(1,-1),b =(λ,1),若a 与b 的夹角α为钝角,求λ的取值范围. 考点 平面向量夹角的坐标表示与应用 题点 已知坐标形式下的向量夹角求参数 解 ∵a =(1,-1),b =(λ,1), ∴|a |=2,|b |=1+λ2,a ·b =λ-1.又∵a ,b 的夹角α为钝角,∴⎩⎪⎨⎪⎧λ-1<0,2·1+λ2≠1-λ,即⎩⎪⎨⎪⎧λ<1,λ2+2λ+1≠0.∴λ<1且λ≠-1.∴λ的取值范围是(-∞,-1)∪(-1,1). 命题角度2 向量的垂直例4 在△ABC 中,AB →=(2,3),AC →=(1,k ),若△ABC 是直角三角形,求k 的值. 考点 平面向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 解 ∵AB →=(2,3),AC →=(1,k ), ∴BC →=AC →-AB →=(-1,k -3).若∠A =90°,则AB →·AC →=2×1+3×k =0,∴k =-23;若∠B =90°,则AB →·BC →=2×(-1)+3(k -3)=0,∴k =113;若∠C =90°,则AC →·BC →=1×(-1)+k (k -3)=0, ∴k =3±132.故所求k 的值为-23或113或3±132.反思感悟 利用向量数量积的坐标表示解决垂直问题的实质是把垂直条件代数化,若在关于三角形的问题中,未明确哪个角是直角时,要分类讨论.跟踪训练4 已知a =(-3,2),b =(-1,0),若向量λa +b 与a -2b 垂直,则实数λ的值为( ) A.17 B .-17 C.16 D .-16考点 向量平行与垂直的坐标表示与应用 题点 已知向量垂直求参数 答案 B解析 由向量λa +b 与a -2b 垂直,得 (λa +b )·(a -2b )=0.因为a =(-3,2),b =(-1,0), 所以(-3λ-1,2λ)·(-1,2)=0, 即3λ+1+4λ=0,解得λ=-17.向量的坐标在解三角形中的应用典例 如图,已知△ABC 的面积为32,AB =2,AB →·BC →=1,求边AC 的长.解 以点A 为坐标原点,AB →为x 轴正方向建立平面直角坐标系,设点C 的坐标为(x ,y )(y >0), ∵AB =2,∴点B 的坐标是(2,0), ∴AB →=(2,0),BC →=(x -2,y ). ∵AB →·BC →=1,∴2(x -2)=1,解得x =52.又S △ABC =32,∴12·|AB |·y =32,∴y =32,∴C 点坐标为⎝⎛⎭⎫52,32,则AC →=⎝⎛⎭⎫52,32, ∴|AC →|=⎝⎛⎭⎫522+⎝⎛⎭⎫322=342, 故边AC 的长为342. [素养评析] 本题通过建立直角坐标系,从而建立形与数的联系.利用平面向量的坐标解决线段的长度问题,提升了学生数形结合的能力,培养了学生数学运算及直观想象的数学核心素养.1.已知a =(3,4),b =(5,12),则a 与b 夹角的余弦值为( ) A.6365 B.65 C.135D.13 考点 平面向量夹角的坐标表示与应用 题点 求坐标形式下的向量的夹角 答案 A 解析 |a |=32+42=5,|b |=52+122=13.a·b =3×5+4×12=63.设a ,b 夹角为θ,所以cos θ=635×13=6365.2.若向量a =(x ,2),b =(-1,3),a·b =3,则x 等于( ) A .3 B .-3 C.53 D .-53考点 平面向量数量积的坐标表示与应用题点 已知数量积求参数答案 A解析 a·b =-x +6=3,故x =3.3.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于( )A .-4B .-3C .-2D .-1考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数答案 B解析 因为m +n =(2λ+3,3),m -n =(-1,-1),由(m +n )⊥(m -n ),可得(m +n )·(m -n )=(2λ+3,3)·(-1,-1)=-2λ-6=0,解得λ=-3.4.若平面向量a =(1,-2)与b 的夹角是180°,且|b |=35,则b 等于( )A .(-3,6)B .(3,-6)C .(6,-3)D .(-6,3)考点 平面向量数量积的坐标表示与应用题点 平面向量模与夹角的坐标表示的综合应用答案 A解析 由题意设b =λa =(λ,-2λ)(λ<0),则|b |=λ2+(-2λ)2=5|λ|=35,又λ<0,∴λ=-3,故b =(-3,6).5.已知三个点A (2,1),B (3,2),D (-1,4).求证:AB ⊥AD .证明 ∵A (2,1),B (3,2),D (-1,4),∴AB →=(1,1),AD →=(-3,3).又∵AB →·AD →=1×(-3)+1×3=0,∴AB →⊥AD →,即AB ⊥AD .6.已知a =(4,3),b =(-1,2).(1)求a 与b 的夹角的余弦值;(2)若(a -λb )⊥(2a +b ),求实数λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 已知向量垂直求参数解 (1)∵a ·b =4×(-1)+3×2=2,|a |=42+32=5,|b |=(-1)2+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=255=2525. (2)∵a -λb =(4+λ,3-2λ),2a +b =(7,8),(a -λb )⊥(2a +b ),∴(a -λb )·(2a +b )=7(4+λ)+8(3-2λ)=0,∴λ=529.1.平面向量数量积的定义及其坐标表示,提供了数量积运算的两种不同的途径.准确地把握这两种途径,根据不同的条件选择不同的途径,可以优化解题过程.同时,平面向量数量积的两种形式沟通了“数”与“形”转化的桥梁,成为解决距离、角度、垂直等有关问题的有力工具.2.应用数量积运算可以解决两向量的垂直、平行、夹角以及长度等几何问题,在学习中要不断地提高利用向量工具解决数学问题的能力.3.注意区分两向量平行与垂直的坐标形式,二者不能混淆,可以对比学习、记忆.若两非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0,a ⊥b ⇔x 1x 2+y 1y 2=0.4.事实上应用平面向量的数量积公式解答某些平面向量问题时,向量夹角问题却隐藏了许多陷阱与误区,常常会出现因模糊“两向量的夹角的概念”而忽视“两向量夹角”的范围,稍不注意就会带来失误与错误.一、选择题1.已知a =(3,-1),b =(1,-2),则a 与b 的夹角为( )A.π6B.π4C.π3D.π2考点 平面向量夹角的坐标表示与应用题点 求坐标形式下的向量的夹角答案 B解析 ∵|a |=10,|b |=5,a ·b =5.∴cos 〈a ,b 〉=a ·b|a ||b |=510×5=22.又∵a ,b 的夹角范围为[0,π].∴a 与b 的夹角为π4.2.设向量a =(2,0),b =(1,1),则下列结论中正确的是( )A .|a |=|b |B .a·b =0C .a ∥bD .(a -b )⊥b考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 D解析 a -b =(1,-1),所以(a -b )·b =1-1=0,所以(a -b )⊥b .3.已知向量a =(0,-23),b =(1,3),则向量a 在b 方向上的投影为() A. 3 B .3 C .- 3 D .-3考点 平面向量投影的坐标表示与应用题点 平面向量投影的坐标表示与应用答案 D解析 向量a 在b 方向上的投影为a·b |b|=-62=-3.故选D. 4.已知向量a =(1,n ),b =(-1,n ),若2a -b 与b 垂直,则|a |等于( )A .1 B. 2 C .2 D .4考点 平面向量模与夹角的坐标表示与应用题点 利用坐标求向量的模答案 C解析 ∵(2a -b )·b =2a ·b -|b |2=2(-1+n 2)-(1+n 2)=n 2-3=0,∴n 2=3,∴|a |=12+n 2=2.5.若a =(2,-3),则与向量a 垂直的单位向量的坐标为() A .(3,2)B.⎝⎛⎭⎫31313,21313C.⎝⎛⎭⎫31313,21313或⎝⎛⎭⎫-31313,-21313D .以上都不对考点 平面向量平行与垂直的坐标表示与应用题点 向量垂直的坐标表示的综合应用答案 C解析 设与a 垂直单位向量的坐标为(x ,y ),∵(x ,y )是单位向量的坐标形式,∴x 2+y 2=1,即x 2+y 2=1,①又∵(x ,y )表示的向量垂直于a ,∴2x -3y =0,②由①②得⎩⎨⎧ x =31313,y =21313或⎩⎨⎧ x =-31313,y =-21313.6.已知a =(1,1),b =(0,-2),且k a -b 与a +b 的夹角为120°,则k 等于( )A .-1+ 3B .-2C .-1±3D .1考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 ∵|k a -b |=k 2+(k +2)2, |a +b |=12+(-1)2=2,∴(k a -b )·(a +b )=(k ,k +2)·(1,-1)=k -k -2=-2,又k a -b 与a +b 的夹角为120°,∴cos 120°=(k a -b )·(a +b )|k a -b ||a +b |, 即-12=-22×k 2+(k +2)2,化简并整理,得k 2+2k -2=0,解得k =-1±3.7.已知OA →=(-2,1),OB →=(0,2)且AC →∥OB →,BC →⊥AB →,则点C 的坐标是( )A .(2,6)B .(-2,-6)C .(2,-6)D .(-2,6)考点 向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用答案 D解析 设C (x ,y ),则AC →=(x +2,y -1),BC →=(x ,y -2),AB →=(2,1),∵AC →∥OB →,∴2(x +2)=0,①∵BC →⊥AB →,∴2x +y -2=0,②由①②可得⎩⎪⎨⎪⎧x =-2,y =6,∴C (-2,6). 8.已知向量a =(1,1),b =(1,m ),其中m 为实数,则当a 与b 的夹角在⎝⎛⎭⎫0,π12内变动时,实数m 的取值范围是( )A .(0,1)B.⎝⎛⎭⎫33,3C.⎝⎛⎭⎫33,1∪(1,3) D .(1,3)考点 平面向量夹角的坐标表示与应用题点 已知坐标形式下的向量夹角求参数答案 C解析 如图,作OA →=a ,则A (1,1).作OB 1→,OB 2→,使∠AOB 1=∠AOB 2=π12, 则∠B 1Ox =π4-π12=π6, ∠B 2Ox =π4+π12=π3, 故B 1⎝⎛⎭⎫1,33,B 2(1,3). 又a 与b 的夹角不为0,故m ≠1.由图可知实数m 的取值范围是⎝⎛⎭⎫33,1∪(1,3). 二、填空题9.已知a =(3,3),b =(1,0),则(a -2b )·b =________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 1解析 a -2b =(1,3),(a -2b )·b =1×1+3×0=1.10.已知平面向量a =(2,4),b =(1,-2),若c =a -(a ·b )b ,则|c |=________.考点 平面向量模的坐标表示与应用题点 利用坐标求向量的模答案 8 2解析 由题意可得a·b =2×1+4×(-2)=-6,∴c =a -(a ·b )b =a +6b =(2,4)+6(1,-2)=(8,-8),∴|c |=82+(-8)2=8 2.11.设m =(a ,b ),n =(c ,d ),规定两向量m ,n 之间的一个运算“⊗”为m ⊗n =(ac -bd ,ad +bc ),若已知p =(1,2),p ⊗q =(-4,-3),则q 的坐标为________.考点 平面向量数量积的坐标表示与应用题点 已知数量积求向量的坐标答案 (-2,1)解析 设q =(x ,y ),则p ⊗q =(x -2y ,y +2x )=(-4,-3).∴⎩⎪⎨⎪⎧ x -2y =-4,y +2x =-3,∴⎩⎪⎨⎪⎧x =-2,y =1.∴q =(-2,1). 12.已知向量OA →=(1,7),OB →=(5,1)(O 为坐标原点),设M 为直线y =12x 上的一点,那么MA →·MB →的最小值是________.考点 平面向量数量积的坐标表示与应用题点 坐标形式下的数量积运算答案 -8解析 设M ⎝⎛⎭⎫x ,12x , 则MA →=⎝⎛⎭⎫1-x ,7-12x ,MB →=⎝⎛⎭⎫5-x ,1-12x , MA →·MB →=(1-x )(5-x )+⎝⎛⎭⎫7-12x ⎝⎛⎭⎫1-12x =54(x -4)2-8. 所以当x =4时,MA →·MB →取得最小值-8.三、解答题13.(2018·安徽芜湖质检)已知向量a =(1,2),b =(2,-2).(1)设c =4a +b ,求(b ·c )a ;(2)若a +λb 与a 垂直,求λ的值.考点 平面向量平行与垂直的坐标表示与应用题点 向量平行与垂直的坐标表示的综合应用解 (1)∵c =4(1,2)+(2,-2)=(6,6),∴b ·c =(2,-2)·(6,6)=2×6-2×6=0,∴(b ·c )a =0·a =0.(2)∵a +λb =(1,2)+λ(2,-2)=(1+2λ,2-2λ),(a +λb )⊥a ,∴(1+2λ)+2(2-2λ)=0,解得λ=52.14.已知OA →=(4,0),OB →=(2,23),OC →=(1-λ)OA →+λOB →(λ2≠λ). (1)求OA →·OB →及OA →在OB →上的投影;(2)证明A ,B ,C 三点共线,且当AB →=BC →时,求λ的值;(3)求|OC →|的最小值.考点 平面向量夹角的坐标表示与应用题点 平面向量模的坐标表示的综合应用解 (1)OA →·OB →=8,设OA →与OB →的夹角为θ,则cos θ=OA →·OB →|OA →||OB →|=84×4=12, ∴OA →在OB →上的投影为|OA →|cos θ=4×12=2. (2)AB →=OB →-OA →=(-2,23),BC →=OC →-OB →=(1-λ)OA →-(1-λ)OB →=(λ-1)AB →,又因为BC →与AB →有公共点B ,所以A ,B ,C 三点共线. 当AB →=BC →时,λ-1=1,所以λ=2.(3)|OC →|2=(1-λ)2OA →2+2λ(1-λ)OA →·OB →+λ2OB →2=16λ2-16λ+16=16⎝⎛⎭⎫λ-122+12, ∴当λ=12时,|OC →|取最小值2 3.。