力法的原理与方程
- 格式:ppt
- 大小:3.18 MB
- 文档页数:42
1第六章力法2一. 力法的基本未知量和基本体系力法计算的基本思路:把超静定结构的计算问题转化为静定结构的计算问题,即利用已经熟悉的静定结构的计算方法来达到计算超静定结构的目的。
6-1 力法的基本原理3力法思路基本结构待解的未知问题qEI EIqEIX 1基本体系基本未知量01=Δ基本方程41111=+=P ΔΔΔ11111X Δδ=01111=+⋅P ΔX δ力法方程力法方程P 1Δ其中δ11和Δ1P可图乘法获得;由此确定约束力X 1,通过叠加求内力;超静定问题变成静定问题。
q1X Δ11=X 11δqEIqEIX 11=Δ5)力法是将多余未知力作为基本未知量的分析方法。
)将全部多余约束去掉得到的静定结构称力法的基本结构。
)根据原结构的变形条件而建立的位移方程称力法基本方程。
在变形条件成立条件下,基本体系的内力和位移与原结构相同。
1111=+⋅P ΔX δ6基本结构X 1例:基本体系PV ΔB 1==原结构已知的X 1方向的位移原结构70V ΔB 1==基本结构在X 1和外荷载P 分别作用下的变形:X 111ΔPP1Δ原结构已知的X 1方向的位移基本结构在X 1方向的位移1P 11Δ+Δ1P 11Δ+Δ0=11111X Δδ=11=X 11δ01111=Δ+P X δ力法基本方程的物理意义:基本结构在X 1和外荷载P 共同作用下,在B 点的竖向位移之和=原结构已知的在B 点的竖向位移(等于零)。
8一个超静定结构可选的力法基本结构往往不只一种。
X 1表示原结构支座B 截面的弯矩。
基本体系二基本体系二选取:原结构PPX 1基本结构Δ1=原结构在B 点左右两截面的相对转角等于零9基本结构:PX 11PΔ11ΔB11111X δ=Δ0ΔX δ=+1P 111基本体系在X 1 和外荷载P 共同作用下,在B 点左右两截面的相对转角之和=原结构已知的在B 点左右两截面的相对转角(等于零)1P11Δ+Δ0=10(1)(2)(1)基本结构的图和图好绘。
力法和位移法的基本方程力法和位移法是结构力学中常用的两种分析方法。
力法是以外力为基础,通过计算结构内力来求解结构的变形和应力状态;位移法则是以结构变形为基础,通过计算结构位移来求解结构的内力和应力状态。
两种方法各有优缺点,应根据具体情况选择合适的方法进行分析。
力法的基本方程为平衡方程和应力-应变关系式。
平衡方程是指结构受到的外力与内力的平衡关系,可以用以下公式表示:∑F = 0其中,∑F表示结构受到的所有外力的合力,等于内力的合力。
这个方程可以用来计算结构的内力分布。
应力-应变关系式是指材料的应力与应变之间的关系,可以用以下公式表示:σ = Eε其中,σ表示应力,E表示弹性模量,ε表示应变。
这个方程可以用来计算结构的应力分布。
位移法的基本方程为位移-力关系式和应力-应变关系式。
位移-力关系式是指结构的位移与内力之间的关系,可以用以下公式表示:u = ∑(k_i)^(-1)F_i其中,u表示结构的位移,k_i表示第i个节点的刚度,F_i表示第i个节点的外力。
这个方程可以用来计算结构的内力分布。
应力-应变关系式同样适用于位移法,可以用来计算结构的应力分布。
需要注意的是,力法和位移法的基本方程只是分析结构的起点,具体的分析方法和计算过程还需要根据具体情况进行选择和确定。
同时,结构的材料性质、几何形状、边界条件等因素也会对分析结果产生影响,需要进行综合考虑。
总之,力法和位移法是结构力学中常用的两种分析方法,它们的基本方程为平衡方程和应力-应变关系式、位移-力关系式和应力-应变关系式。
在实际分析中,应根据具体情况选择合适的方法进行分析,并考虑结构的材料性质、几何形状、边界条件等因素。
第二节 力法的基本原理及典型方程力法是计算超静定结构的最基本方法。
采用力法求解超静定结构问题时,不能孤立地研究超静定问题,而是应该把超静定问题与静定问题联系起来,即利用已经熟悉的静定结构计算方法来达到计算超静定结构的目的。
一、力法的基本原理这里先用一个简单的一次超静定结构为例来说明力法的基本概念,即讨论如何在静定结构的基础上,进一步寻求计算超静定结构的方法。
1、力法的基本未知量、基本结构和基本体系图7-7(a)所示为一次超静定梁结构,若将B 处支座链杆作为多余约束去掉,则能得到静定的悬臂梁结构(图7-7(b))。
将原超静定结构中去掉多余约束后所得到的静定结构,称为力法的基本结构。
所去掉的多余约束处,以相应的多余未知力1X 来表示其作用,如图7-7(b)所示,这样原结构就相当于基本结构同时受到已知外荷载q 和多余未知力1X 的共同作用。
基本结构在原荷载和多余未知力共同作用下的体系称为力法的基本体系。
在基本体系中,仍然保留原结构的多余约束反力1X ,,只是把它由被动的支座反力改为主动力。
因此基本体系的受力状态与原结构是完全相同的,基本体系完全可以代表原超静定结构。
在基本体系中,只要能够设法求出1X ,则剩下的问题就是静定结构的问题了。
由此可知,力法的主要特点就是把多余未知力的计算问题当作超静定问题的关键问题,把多余未知力当作处于关键地位的未知力,因此多余未知力称为力法的基本未知量,力法这个名称就是由此而来的。
图7-7 力法的基本结构和基本体系(a)原超静定结构 (b)基本结构 (c)基本体系2、力法方程的建立怎样才能求出图7-7(c)中基本未知量1X 呢?在基本体系中,未知力1X 相当于外荷载,因此无论1X 为多大,只要梁不破坏,都能够满足平衡条件,显然不能利用平衡条件求解1X ,必须补充新的条件。
为此,将图7-7(c)中的基本体系与图7-7(a)中的原超静定结构加以比较。
在图7-7(a)所示的原超静定结构中,1X 表示支座B 处的约束反力,它是被动的,是固定值,与1X 相应的位移1 (即B 点的竖向位移)等于零。