数学培优班学案(一次函数)
- 格式:doc
- 大小:431.50 KB
- 文档页数:5
高中数学必修一培优教案课题:一次函数教学目标:1. 了解一次函数的定义和性质;2. 能够根据给定的一次函数求出其函数图像、斜率和截距;3. 能够利用一次函数解决实际问题。
教学重点:1. 一次函数的定义和性质;2. 一次函数的函数图像;3. 一次函数的斜率和截距。
教学难点:1. 通过实际问题解决一次函数;2. 一次函数的斜率和截距的计算。
教学准备:1. 教材:高中数学必修一教材;2. 工具:教学PPT、教学板书、习题集;3. 准备实际问题解决一次函数的例题。
教学步骤:一、引入概念(10分钟)1. 介绍一次函数的定义和性质;2. 通过实例解释一次函数的基本概念。
二、探究一次函数的函数图像(15分钟)1. 讲解一次函数的函数图像的形状;2. 通过一些例题让学生绘制一次函数的函数图像。
三、探讨一次函数的斜率和截距(15分钟)1. 讲解一次函数的斜率和截距的定义;2. 通过例题让学生计算一次函数的斜率和截距。
四、应用实际问题解决一次函数(15分钟)1. 解释如何利用一次函数解决实际问题;2. 给出一个实际问题,让学生利用一次函数进行计算和分析。
五、总结与讨论(5分钟)1. 总结本节课的内容;2. 回答学生提出的问题。
作业布置:1. 让学生完成课后习题;2. 让学生找出身边的实际问题,利用一次函数进行分析和解决。
教学反思:通过这堂课的教学,我发现学生对一次函数的概念和性质有了更深入的理解,能够通过一次函数解决实际问题的能力也有所提高。
下一节课将继续巩固学生对一次函数的理解,并引入二次函数的概念。
八年级数学培优学案7--一次函数基本概念1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
例题:在匀速运动公式vt s =中,v 表示速度,t 表示时间,s 表示在时间t 内所走的路程,则变量是______,常量是______。
在圆的周长公式C=2πr 中,变量是_______,常量是________.2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。
*判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应例题1:下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( ) (A )4个 (B )3个 (C )2个 (D )1个3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。
4、确定函数定义域的方法:(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。
例题2:下列函数中,自变量x 的取值范围是x ≥2的是( )A ... D .练习1.函数y =x 的取值范围是___________. 2.已知函数221+-=x y ,当11≤<-x 时,y 的取值范围是() A.2325≤<-y B.2523<<y C.2523<≤y D.2523≤<y 5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。
个性化教学设计方案教师姓名上课日期2013年3月23日学生姓名年级九学科数学课题一次函数学习目标掌握一次函数的表示与图像教学重点掌握一次函数的性质与图像的一些性质教学难点能用一次函数解决一些实际问题教学过程师生活动设计意向知识点归纳1.平面直角坐标系的初步知识在平面内画两条互相垂直的数轴,就组成平面直角坐标系,水平的数轴叫做x轴或横轴 (正方向向右),铅直的数轴叫做y轴或纵轴(正方向向上),两轴交点O是原点.这个平面叫做坐标平面.x轴和y把坐标平面分成四个象限(每个象限都不包括坐标轴上的点),要注意象限的编号顺序及各象限内点的坐标的符号:由坐标平面内一点向x轴作垂线,垂足在x轴上的坐标叫做这个点的横坐标,由这个点向y轴作垂线,垂足在y轴上的坐标叫做这个点的纵坐标,这个点的横坐标、纵坐标合在一起叫做这个点的坐标(横坐标在前,纵坐标在后).一个点的坐标是一对有序实数,对于坐标平面内任意一点,都有唯一一对有序实数和它对应,对于任意一对有序实数,在坐标平面都有一点和它对应,也就是说,坐标平面内的点与有序实数对是一一对应的.2.函数设在一个变化过程中有两个变量x与y,如果对于x的每一个值, y都有唯一的值与它对应,那么就说x 是自变量, y 是x 的函数.用数学式子表示函数的方法叫做解析法.在用解析式表示函数时,要考虑自变量的取值范围必须使解析式有意义.遇到实际问题,还必须使实际问题有意义. 当自变量在取值范围内取一个值时,函数的对应值叫做自变量取这个值时的函数值.3.函数的图象把自变量的一个值和自变量取这个值时的函数值分别作为点的横坐标和纵坐标,可以在坐标平面内描出一个点,所有这些点组成的图形,就是这个函数的图象.也就是说函数图象上的点的坐标都满足函数的解析式,以满足函数解析式的自变量值和与它对应的函数值为坐标的点都在函数图象上.知道函数的解析式,一般用描点法按下列步骤画出函数的图象:(i)列表.在自变量的取值范围内取一些值,算出对应的函数值,列成表. (ii)描点.把表中自变量的值和与它相应的函数值分别作为横坐标与纵坐标,在坐标平面内描出相应的点.(iii)连线.按照自变量由小到大的顺序、用平滑的曲线把所描各点连结起来. 一次函数一次函数0,0,y y x k y x ⎧≠⎧⎪⎨≠⎩⎪⎪>⎧⎪⎨⎨<⎩⎪⎪⎪⎪⎩一般式y=kx+b(k 0)概念正比例函数y=kx(k 0)随的增大而增大性质随的增大而减小b图象:经过(0,b),(-,0)的直线k经典例题了解平面直角坐标系的意义,会判断点的位置或求点的坐标例1、在平面直角坐标系中,点(-1,-2)所在的象限是 ( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限 分析:考查已知的点的坐标,确定它的象限 答案:D 例 2 .如果代数式aba 1+有意义.那么直角坐标系中点A(a 、b)的位置在( ).(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 分析:要使根式有意义,a 和b 都要大于0 答案: A 例3(1)(2006年益阳市)在平面直角坐标系中,点A 、B 、C 的坐标分别为A (-•2,1),B (-3,-1),C (1,-1).若四边形ABCD 为平行四边形,那么点D 的坐标是________. (2)(2006年德州市)将点A (3,1)绕原点O 顺时针旋转90°到点B ,则点B•的坐标是__________.【解析】利用数形结合的方法,直观求解. 会根据图象获取信息,进行判断 例4、函数1-=x y 中,自变量x 的取值范围是___________________;答案:x ≥l例5、下列四个图象中,不表示某一函数图象的是( ).分析:D 图不能用函数式表示出来。
初二数学培优学案(12)----一次函数一、一次函数的解析式 1.要使y=(m-2)xn-1+n 是关于x 的一次函数,n,m 应满足 , .2.下列函数中是一次函数的是( ) A.122-=x yB.x y 1-= C.31+=x y D.1232-+=x x y3.已知,在平面直角坐标系内,点A 的坐标为(0,24),经过原点的直线l 1与经过点A 的直线l 2相交于点B ,点B 坐标为(18,6).求直线l 1,l 2的表达式;4.汽车从A 站经B 站后匀速开往C 站,已知离开B 站9分时,汽车离A 站10千米,又行驶一刻钟,离A 站20千米.(1)写出汽车与B 站距离y 与B 站开出时间t 的关系;(2)如果汽车再行驶30分,离A 站多少千米?5.甲乙两个仓库要向A 、B 两地运送水泥,已知甲库可调出100吨水泥,乙库可调出80吨水泥,A 地需70吨水泥,B 地需110吨水泥,两库到A ,B 两地的路程和运费如下表(表中运费栏“元/(吨、千米)”表示每吨水泥运送1千米所需人民币)路程/千米运费(元/吨、千米) 甲库乙库 甲库 乙库 A 地20151212B 地25 20 10 8 (1)设甲库运往A 地水泥x 吨,求总运费y (元)关于x (吨)的函数关系式,画出它的图象(草图).(2)当甲、乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省的总运费是多少二、一次函数的图像性质1.一次函数y kx b =+的图象过点(,1)m 和(1,)m 两点,且1m >,则k = ,b 的取值范围是 .2.b 为 时,直线2y x b =+与直线34y x =-的交点在x 轴上.3.已知直线42y x =-与直线3y m x =-的交点在第三象限内,则m 的取值范围是 .4.图3中,表示一次函数y mx n =+与正比例函数(y mx m =、n 是常数,且0,0)m n ≠<的图象的是( )5.直线y kx b =+经过一、二、四象限,则直线y bx k =-的图象只能是图4中的( )6.若直线11y k x =+与24y k x =-的交点在x 轴上,那么12k k 等于( ) .4A .4B - 1.4C 1.4D -7.直线0px qy r ++=(0)pq ≠如图5,则下列条件正确的是( ) .,1A p q r == .,0B p q r == .,1C p q r =-= .,0D p q r =-= 8.直线y kx b =+经过点(1,)A m -,(,1)B m (1)m >,则必有( ) A. 0,0k b >> .0,0B k b >< .0,0C k b <> .0,0D k b << 9.如果0ab >,0a c <,则直线a cy x b b=-+不通过( ) A .第一象限 B .第二象限C .第三象限 D .第四象限10.已知关于x 的一次函数27y mx m =+-在15x -≤≤上的函数值总是正数,则m 的取值范围是( ) A .7m > B .1m > C .17m ≤≤ D .都不对11.已知直线(0)y kx b k =+≠与x 轴的交点在x 轴的正半轴,下列结论:① 0,0k b >>;②0,0k b ><;③0,0k b <>;④0,0k b <<,其中正确的个数是( )A .1个B .2个C .3个D .4个12.如图7,A 、B 两站相距42千米,甲骑自行车匀速行驶,由A 站经P 处去B 站,上午8时,甲位于距A 站18千米处的P 处,若再向前行驶15分钟,使可到达距A 站22千米处.设甲从P 处出发x 小时,距A 站y 千米,则y 与x 之间的关系可用图象表示为( )13.在平面直角坐标系中,将直线23+-=x y 向下平移动4个单位长度后,所得直线的解析式为( )。
八年级数学培优学案(13)----一次函数综合一、选择题:1.已知y 与x+3成正比例,并且x=1时,y=8,那么y 与x 之间的函数关系式为( )(A )y=8x (B )y=2x+6 (C )y=8x+6 (D )y=5x+32.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过( )(A )一象限 (B )二象限 (C )三象限 (D )四象限3.直线y=-2x+4与两坐标轴围成的三角形的面积是( )(A )4 (B )6 (C )8 (D )164.若甲、乙两弹簧的长度y (cm )与所挂物体质量x (kg )之间的函数解析式分别为y=k 1x+a 1和y=k 2x+a 2,如图,所挂物体质量均为2kg 时,甲弹簧长为y 1,乙弹簧长为y 2,则y 1与y 2的大小关系为( )(A )y 1>y 2 (B )y 1=y 2 (C )y 1<y 2 (D )不能确定5.设b>a ,将一次函数y=bx+a 与y=ax+b 的图象画在同一平面直角坐标系内,•则有一组a ,b 的取值,使得下列4个图中的一个为正确的是( )6.若直线y=kx+b 经过一、二、四象限,则直线y=bx+k 不经过第( )象限.(A )一 (B )二 (C )三 (D )四7. 无论m 为何实数,直线y=x+2m 与y=-x+4的交点不可能在( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限8.若函数y=(m-5)x+(4m+1)x 2(m 为常数)中的y 与x 成正比例,则m 的值为( )(A )m>-14 (B )m>5 (C )m=-14(D )m=5 9.若直线y=3x-1与y=x-k 的交点在第四象限,则k 的取值范围是( ).(A )k<13 (B )13<k<1 (C )k>1 (D )k>1或k<1310.过点P (-1,3)直线,使它与两坐标轴围成的三角形面积为5,•这样的直线可以作( )(A )4条 (B )3条 (C )2条 (D )1条11.当-1≤x ≤2时,函数y=ax+6满足y<10,则常数a 的取值范围是( )(A )-4<a<0 (B )0<a<2(C )-4<a<2且a ≠0 (D )-4<a<212.在直角坐标系中,横坐标都是整数的点称为整点,设k 为整数.当直线y=x-3与y=kx+k 的交点为整点时,k 的值可以取( )(A )2个 (B )4个 (C )6个 (D )8个13.关于x 的一次函数y=kx+k 2+1的图像可能是( )14.已知一次函数y=mx +n -2的图像如图所示,则m 、n 的取值范围是( )A.m >0,n <2B. m >0,n >2C. m <0,n <2D. m <0,n >215.已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( )A. 1x <-B. 1x >-C. 1x >D.1x <16.设min {x ,y }表示x,y 两个数中的最小值,例如min {0,2}=0,min {12,8}=8,则关于x 的函数y=min{2x ,x+2},y 可以表示为( )A. ()()2222x x y x x <⎧⎪=⎨+≥⎪⎩ B. ()()2222x x y x x +<⎧⎪=⎨≥⎪⎩ C. y =2x D. y =x +2二、填空题 1.已知一次函数y=-6x+1,当-3≤x ≤1时,y 的取值范围是________.2.已知一次函数y=(m-2)x+m-3的图像经过第一,第三,第四象限,则m 的取值范围是________.3.函数y=-3x+2的图像上存在点P ,使得P•到x•轴的距离等于3,•则点P•的坐标为__________.4.过点P (8,2)且与直线y=x+1平行的一次函数解析式为_________.5.若一次函数y=kx+b ,当-3≤x ≤1时,对应的y 值为1≤y ≤9,•则一次函数的解析式为________.6.设直线kx+(k+1)y-1=0(k 为正整数)与两坐标所围成的图形的面积为S k (k=1,2,3,……,2008),那么S 1+S 2+…+S 2008=_______.7.已知关于x 的一次函数y mx n =+的图象如图所示,则||n m-____.8. 求与直线y x =平行,并且经过点P(1,2)的一次函数解析式.9. 已知一次函数3+=kx y 的图象如图所示,则不等式03<+kx 的解集是________。
课程目标:1. 知识与技能:理解函数图像的基本概念,掌握一次函数、二次函数的图像特点及性质。
2. 过程与方法:通过观察、分析、归纳等方法,培养学生对函数图像的理解和运用能力。
3. 情感态度与价值观:激发学生对数学学习的兴趣,培养学生的逻辑思维和解决问题的能力。
教学对象:重点初中培优班学生教学时间:2课时教学重点:1. 函数图像的基本概念2. 一次函数、二次函数的图像特点及性质教学难点:1. 如何根据函数解析式画出函数图像2. 函数性质在解决实际问题中的应用教学准备:1. 多媒体课件2. 练习题3. 函数图像相关教材教学过程:第一课时一、导入1. 回顾上一节课的内容,引导学生回顾一次函数的概念。
2. 提出问题:如何通过图像来直观地了解函数的性质?二、新课讲授1. 介绍函数图像的基本概念,包括坐标系、函数图像的绘制方法等。
2. 以一次函数为例,讲解一次函数的图像特点及性质,如斜率、截距等。
3. 引导学生通过观察一次函数图像,分析函数的变化规律。
三、巩固练习1. 学生独立完成一次函数图像的绘制,并标注斜率和截距。
2. 教师巡视指导,纠正学生操作中的错误。
四、课堂小结1. 总结一次函数图像的特点及性质。
2. 强调函数图像在解决实际问题中的应用。
第二课时一、复习导入1. 复习一次函数图像的特点及性质。
2. 提出问题:二次函数的图像特点及性质与一次函数有何异同?二、新课讲授1. 介绍二次函数的概念,讲解二次函数的图像特点及性质,如顶点、对称轴等。
2. 以二次函数为例,讲解如何根据函数解析式画出函数图像。
3. 引导学生通过观察二次函数图像,分析函数的变化规律。
三、巩固练习1. 学生独立完成二次函数图像的绘制,并标注顶点、对称轴等关键点。
2. 教师巡视指导,纠正学生操作中的错误。
四、课堂小结1. 总结二次函数图像的特点及性质。
2. 强调函数性质在解决实际问题中的应用。
五、布置作业1. 完成教材中的相关练习题。
2. 收集生活中的实际问题,尝试运用函数图像进行分析和解决。
八年级数学培优学案(4)-----一次函数及其性质知识点一:一次函数的定义一般地,形如y kx b =+(k ,b 是常数,0k ≠)的函数,叫做一次函数,当0b =时,即y kx =,这时即是正比例函数.⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数.⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 及时练习1:1.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 2. 下列函数(1)y=πx (2)y=2x-1 (3)y=1x(4)y=2-1-3x (5)y=x 2-1中,是一次函数的有( )(A )4个 (B )3个 (C )2个 (D )1个3. 已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.4. 已知函数221(43)3a a y a a x --=-++是一次函数,则a 的值为知识点二:一次函数的图象及其画法⑴一次函数y kx b =+(0k ≠,k ,b 为常数)的图象是一条直线.⑵由于两点确定一条直线,所以在平面直角坐标系内画一次函数的图象时,只要先描出两个点,再连成直线即可.①如果这个函数是正比例函数,通常取()00,,()1k ,两点; ②如果这个函数是一般的一次函数(0b ≠),通常取()0b ,,0b k ⎛⎫- ⎪⎝⎭,,即直线与两坐标轴的交点.⑶由函数图象的意义知,满足函数关系式y kx b =+的点()x y ,在其对应的图象上,这个图象就是一条直线l ,反之,直线l 上的点的坐标()x y ,满足y kx b =+,也就是说,直线l 与y kx b =+是一一对应的,所以通常把一次函数y kx b =+的图象叫做直线l :y kx b =+,有时直接称为直线y kx b =+.及时练习2:1. 如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为_____.2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴交于点C ,则此一次函数的解析式为__________,△AOC 的面积为_________.3. 一次函数y=kx+k+1的图象不经过第三象限,那么k 的取值范围为( )A.0< k < 1B.-1< k < 0C. -1≤ k < 0D.k < 04.图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,0mn ≠)图象的是( )5.若直线23y x =+与32y x b =-相交于X 轴,则b 的值是 () A 、3- B 、32-C 、6D 、94- CD6. 已知m 是整数,且一次函数(4)2y m x m =+++的图象不过第二象限,则m 为 .知识点三:一次函数的增减性⑴当0k >时,一次函数y kx b =+的图象从左到右上升,y 随x 的增大而增大; ⑵当0k <时,一次函数y kx b =+的图象从左到右下降,y 随x 的增大而减小. 及时练习3:1. 点A (1x ,1y )和点B (2x ,2y )在同一直线y kx b =+上,且0k <.若12x x >,则1y ,2y 的关系是:( )A 、12y y >B 、12y y <C 、12y y =D 、无法确定.2. 已知点(-4,y 1),(2,y 2)都在直线y=- 12x+2上,则y 1 y 2大小关系是( )(A )y 1 >y 2 (B )y 1 =y 2 (C )y 1 <y 2 (D )不能比较3. 一次函数y=kx+b 满足kb>0且y随x的增大而减小,则此函数的图象不经过( ) A 、第一象限 B 、第二象限 C 、第三象限 D 、第四象限4. 已知正比例函数x m y )12(-= 的图象上两点A (1x ,1y ),B (2x ,2y ),当21x x < 时,有21y y >,那么m 的取值范围是_________________5. 已知,函数()1321y k x k =-+-,试回答: (1)k 为何值时,图象交x 轴于点(34,0)(2)k 为何值时,y 随x 增大而增大?知识点四:一次函数y kx b =+的图象、性质与k 、b 的符号(1) k 决定函数趋势。
一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。
数学八年级下册《一次函数》学案学习目标:1、知道一次函数图象的特点,会熟练地画一次函数的图象。
2、知道一次函数与正比例函数图象之间的关系。
3、掌握一次函数的性质。
学习重点:一次函数图象的特点、画法及性质.【思考】请你比较上面三个函数的图象的相同点与不同点,填出你的观察结果: 这三个函数的图象形状都是 ,并且倾斜程度 ;函数y=-6x 的图象经过(0,0);函数y=-6x+5的图象与y 轴交于点 ,即它可以看作由直线y=-6x 向 平移 个单位长度而得到的;函数y=-6x-5的图象与y 轴交点是 ,即它可以看作由直线y=-6x 向 平移 个单位长度而得到的;比较三个函数解析式,试解释这是为什么?【猜想】联系上面例子考虑一次函数y=kx+b 的图象是什么形状,它与直线y=kx 有什么关系? 归纳平移法则:一次函数y=kx+b 的图象是一条 ,我们称它为直线y=kx+b ,它可以看作由直线y=kx 平移 个单位长度而得到(当b>0时,向 平移;当b<0时,向 平移). 对于一次函数y=kx+b(其中k)b 为常数,k ≠0)的图象 直线,你认为有没有更为简便的方法 。
三、巩固拓展:例1、分别画出下列函数的图像。
(图像画在课堂练习本上)(1)12-=x y (2)15.0+-=x y分析:由于一次函数的图像是直线,所以只要确定两个点就能画出它,一般选取直线与x 轴,y 轴的交点。
探究:分别画出下列函数的图像 :(图像画在课堂练习本上)(1)1+=x y (2)12-=x y (3)1+-=x y (4)12--=x y 观察上面四个图像:(1)1+=x y 经过__ __象限;y 随x 的增大而_______,函数的图像从左到右________;(2)12-=x y 经过____象限;y 随x 的增大而_______,函数的图像从左到右________;(3)1+-=x y 经过_____象限;y 随x 的增大而_______,函数的图像从左到右________;(4)12--=x y 经过______象限;y 随x 的增大而_______,函数的图像从左到右________。
《一次函数》数学教案
标题:《一次函数》数学教案
一、教学目标
1. 知识与技能:理解并掌握一次函数的概念和性质;能够正确地表示一次函数,并进行简单计算。
2. 过程与方法:通过实例引入一次函数,让学生在观察、思考和讨论中理解和掌握一次函数的相关知识。
3. 情感态度与价值观:培养学生对数学的兴趣,提高他们的逻辑思维能力和解决问题的能力。
二、教学内容与重点难点
1. 教学内容:一次函数的概念、图象、性质及应用。
2. 重点:一次函数的概念、图象和性质。
3. 难点:一次函数的应用。
三、教学过程
1. 导入新课:通过生活中的实例(如出租车计费方式)引出一次函数的概念。
2. 新知探索:讲解一次函数的定义、图象和性质,并配以适当的例题进行解析。
3. 巩固练习:设计一系列习题,包括基础题、提高题和挑战题,帮助学生巩固所学知识。
4. 小结与作业:回顾本节课的重点内容,布置相关的课后作业。
四、教学策略
1. 创设情境:通过生活实例引发学生的兴趣,使他们更容易理解和接受新知识。
2. 启发引导:采用问题驱动的教学方式,引导学生主动思考,培养他们的探究精神。
3. 分层教学:针对不同层次的学生,设计不同的学习任务,满足他们的个性化需求。
五、教学评价
1. 形成性评价:通过课堂问答、小组讨论和作业批改等方式,及时了解学生的学习情况,给予反馈和指导。
2. 总结性评价:通过期中、期末考试等,对学生的学习成果进行全面的评估。
六、教学反思
在每次教学结束后,教师应反思自己的教学过程,总结经验,找出不足,以便更好地改进教学。
班级: 学生姓名: 主备人: 马艳 审核人: 胡保凤 八年级数学组长: 胡保凤
课题: 一次函数 2015-4-30
例1 求下列函数中自变量x 的取值范围:(1) y =3x -1; (2) y =2x 2+7;(3)2
1
+=
x y ; (4)2
-=x y .
例2 试写出等腰三角形中顶角的度数y 与底角的度数x 之间的函数关系式.
例3 收音机刻度盘的波长和频率分别是用米(m)和千赫兹(kHz)为单位标刻的.下面是一些对应的数值:
观察上表回答:
(1)波长l 和频率f 数值之间有什么关系? (2)波长l 越大,频率f 就________.
例4 求下列函数当x = 2时的函数值: (1)y = 2x -5 ; (2)y =-3x 2 ;
(3)1
2
-=x y ; (4)x y
-=2.
例5.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量
y (升)与行驶时间
t (时)的函数关系用图象表示应为下图中的( )
例
6、右边各图给出了变量x 与y 之间的函数是: (
)
A
B
D
例7.一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离s(米)由下式给出:s=10t+2t2.假如滑到坡底的时间为8秒,试问坡长为多少?
例8.王教授和孙子小强经常一起进行早锻炼,主要活动是爬山.有一天,小强让爷爷先上,然后追赶爷爷.图中两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(从小强开始爬山时计时).
(1)图中有一个直角坐标系,它的横轴(x轴)和纵轴(y轴)各表示什么?
(2) 如图,线段上有一点P,则P的坐标是多少?表示的实际意义是什么?
(3)小强让爷爷先上多少米?
(4)山顶离山脚的距离有多少米?谁先爬上山顶?
班级 学生姓名 分数
【基础题】:
1、下列函数中,自变量x 的取值范围是x ≥2的是( )
A ..
. D .2.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )
3、三峡工程在2003年6月1日至2003年6月10日下闸蓄水期间,水库水位由106米升至135米,高峡平湖初现人间,假设水库水位匀速上升,那么下列图象中,能正确反映这10天水位h (米)随时间t (天)变化的是: ( )
4求下列函数中自变量x 的取值范围:
(1)y =-2x -5x 2; (3) y =x (x +3);(3)3
6+=
x x
y ; (4)12-=x y .
5、一支蜡烛长20厘米,点燃后每小时燃烧5厘米,燃烧时剩下的高度n(厘米)与燃烧时间t(时)的函数关系的图象是( )
(A)
【发展题】:1.当x =2及x =-3时,分别求出下列函数的函数值: (1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)1
2
-+=
x x y .
2.当x =2及x =-3时,分别求出下列函数的函数值:
(1) y =(x +1)(x -2);(2)y =2x 2-3x +2; (3)1
2
-+=x x y .
3、如图,四边形MNPQ 为正方形,三角形ABC 是等腰直角三角形,求阴影部分的面积,当MA =1 cm 时,重叠部分的面积是多少?
20 4 h (厘米) t (小时)
20 4 h (厘米) t (小时) 20 4 h (厘米) 20
4 h (厘米) t (小时)。