财务管理教材第二章货币的时间价值
- 格式:doc
- 大小:228.50 KB
- 文档页数:20
第二章:财务管理的价值观念●货币时间价值:年金问题●单项资产的风险与报酬①确定报酬--⑤计算离散系数.最终是为了对投资方案进行决策●证券组合的风险与报酬①组合的期望报酬率②可分散风险与市场风险③证券组合的风险报酬率●单项资产的资本资产定价模型●证券估值①债券估值②股票估值一、货币时间价值●时间价值:将货币作为资本进行投资所获得的报酬并不都是时间价值。
报酬包括:时间价值、风险报酬率、通货膨胀贴水。
在没有风险和通货膨胀的情况下,时间价值与上述报酬率之和相等.银行存款利率、各种债券利率和时间价值有去别的.但为了研究问题,由简单到困难,先假定没有通货膨胀、没有风险。
此时,银行利息率=时间价值。
●时间价值率:扣除风险报酬和通货膨胀贴水后的平均资金利润率或平均报酬率。
1、复利终值:FVn=PV·FVIFi,n(表:复利终值系数表)例:将1000元钱存入银行,年利息率为7%,按复利计算,5年后终值应为?答:FV5=PV·FVIF7%,5=1000×1。
403=1403元。
【重点】2、复利现值:PV=FVn·PVIFi,n(表:复利现值系数表)例:若计划在3年以后得到2000元,年利息率8%,复利计息,则现在应存金额可计算如下?答:PV=FV3·PVIF8%,3=2000×0.794=1588元。
3、后付年金终值:FVAn=A·FVIFAi,n(表:年金终值系数表)例:某人在5年中每年年底存入银行1000元,年存款利率为8%,复利计息,则第5年年末年金终值为?答:FVA5=A·FVIFA8%,5=1000×5.867=5867元。
【重点】4、后付年金现值:PVAn=A·PVIFAi,n(表:年金现值系数表)例:某人准备在今年5年中每年年末从银行取1000元,如果利息率为10%,则现在应存入多少元?答:PVA5=A·PVIFA10%,5=1000×3.791=3791元.5、先付年金终值:XFVAn=A·FVIFAi,n·(1+i)(表:年金终值系数表)例:某人每年年初存入银行1000元,银行年存款利率为8%,则第10年年末的本利和应为多少?答:XFVA10=A·FVIFA8%,10·(1+i)=1000×14。
第二章货币的时间价值货币的时间价值是企业财务管理的一个重要概念,在企业筹资、投资、利润分配中都要考虑货币的时间价值。
企业的筹资、投资和利润分配等一系列财务活动,都是在特定的时间进行的,因而资金时间价值是一个影响财务活动的基本因素。
如果财务管理人员不了解时间价值,就无法正确衡量、计算不同时期的财务收入与支出,也无法准确地评价企业是处于赢利状态还是亏损状态。
资金时间价值原理正确地揭示了不同时点上一定数量的资金之间的换算关系,它是进行投资、筹资决策的基础依据。
一、货币时间价值的概念资金的时间价值原理:我们将资金锁在柜子里,这无论如何也不会增殖。
在资金使用权和所有权分离的今天,资金的时间价值仍是剩余价值的转化形式。
一方面:它是资金所有者让渡资金使用权而获得的一部分报酬;另一方面:它是资金使用者因获得使用权而支付给资金所有者的成本。
资金的时间价值是客观存在的经济范畴,越来越多的企业在生产经营决策中将其作为一个重要的因素来考虑。
在企业的长期投资决策中,由于企业所发生的收支在不同的时点上发生,且时间较长,如果不考虑资金的时间价值,就无法对决策的收支、盈亏做出正确、恰当的分析评价。
资金时间价值: 又称货币时间价值,是指在不考虑通货膨胀和风险性因素的情况下,资金在其周转使用过程中随着时间因素的变化而变化的价值,其实质是资金周转使用后带来的利润或实现的增值。
所以,资金在不同的时点上,其价值是不同的,如今天的100元和一年后的100元是不等值的。
今天将100元存入银行,在银行利息率10%的情况下,一年以后会得到110元,多出的10元利息就是100元经过一年时间的投资所增加了的价值,即货币的时间价值。
显然,今天的100元与一年后的110元相等。
由于不同时间的资金价值不同,所以,在进行价值大小对比时,必须将不同时间的资金折算为同一时间后才能进行大小的比较。
在公司的生产经营中,公司投入生产活动的资金,经过一定时间的运转,其数额会随着时间的持续不断增长。
第二章财务管理基础本章主要内容本章教材主要变化删除了资金时间价值的重复例子;增加了企业风险的概念、风险矩阵以及风险管理原则的相关表述。
第一节货币时间价值1.货币时间价值的概念货币时间价值,是指在没有风险和没有通货膨胀的情况下,货币经历一定时间的投资和再投资所增加的价值,也称为资金的时间价值。
用相对数表示的货币的时间价值也称为纯粹利率(简称纯利率),纯利率是指在没有通货膨胀、无风险情况下资金市场的平均利率。
没有通货膨胀时,短期国债利率可以视为纯利率。
2.复利终值和现值利息有两种计算方法:单利计息和复利计息。
单利计息是指按照固定的本金计算利息的一种计息方式,即只对本金计算利息,各期利息相等。
复利计息是指不仅对本金计算利息,且本期的利息从下期开始也要计算利息的一种计息方式,俗称“利滚利”,各期利息不同。
【例题】A将1000元本金存入银行,利率3%,期限3年,求按单利计算的利息。
【答案】按单利计算的利息=1000×3%×3=90元【解析】按单利计算利息时,只对本金1000元计算利息,每年的利息是相等的,都是1000×3%=30元,故3年的利息是30×3=90元。
【例题】A将1000元本金存入银行,利率3%,期限3年,求按复利计算的利息。
【答案】按复利计算的利息=1000×3%+1000×(1+3%)×3%+1000×(1+3%)(1+3%)×3%=92.73元【解析】按复利计算利息时,第一年只对本金1000元计算利息,第二年对本金1000元和第一年的利息再计算利息,第三年对本金1000元和第一、第二年的利息再计算利息,每年的利息不相等。
(1)复利终值终值是指现在一定量的货币按给定的利息率折算到未来某一时点所对应的金额。
复利终值指现在的特定资金按复利计算方法,折算到将来某一时点的价值。
也可以理解为,现在的一定本金在将来一定时间,按复利计算的本金与利息之和,简称本利和。
第二章货币的时间价值货币的时间价值是企业财务管理的一个重要概念,在企业筹资、投资、利润分配中都要考虑货币的时间价值。
企业的筹资、投资和利润分配等一系列财务活动,都是在特定的时间进行的,因而资金时间价值是一个影响财务活动的基本因素。
如果财务管理人员不了解时间价值,就无法正确衡量、计算不同时期的财务收入与支出,也无法准确地评价企业是处于赢利状态还是亏损状态。
资金时间价值原理正确地揭示了不同时点上一定数量的资金之间的换算关系,它是进行投资、筹资决策的基础依据。
一、货币时间价值的概念资金的时间价值原理:我们将资金锁在柜子里,这无论如何也不会增殖。
在资金使用权和所有权分离的今天,资金的时间价值仍是剩余价值的转化形式。
一方面:它是资金所有者让渡资金使用权而获得的一部分报酬;另一方面:它是资金使用者因获得使用权而支付给资金所有者的成本。
资金的时间价值是客观存在的经济范畴,越来越多的企业在生产经营决策中将其作为一个重要的因素来考虑。
在企业的长期投资决策中,由于企业所发生的收支在不同的时点上发生,且时间较长,如果不考虑资金的时间价值,就无法对决策的收支、盈亏做出正确、恰当的分析评价。
资金时间价值: 又称货币时间价值,是指在不考虑通货膨胀和风险性因素的情况下,资金在其周转使用过程中随着时间因素的变化而变化的价值,其实质是资金周转使用后带来的利润或实现的增值。
所以,资金在不同的时点上,其价值是不同的,如今天的100元和一年后的100元是不等值的。
今天将100元存入银行,在银行利息率10%的情况下,一年以后会得到110元,多出的10元利息就是100元经过一年时间的投资所增加了的价值,即货币的时间价值。
显然,今天的100元与一年后的110元相等。
由于不同时间的资金价值不同,所以,在进行价值大小对比时,必须将不同时间的资金折算为同一时间后才能进行大小的比较。
在公司的生产经营中,公司投入生产活动的资金,经过一定时间的运转,其数额会随着时间的持续不断增长。
公司将筹资的资金用于购建劳动资料和劳动对象,劳动者借以进行生产经营活动,从而实现价值转移和价值创造,带来货币的增值。
资金的这种循环与周转以及因此实现的货币增值,需要一定的时间。
随着时间的推移,资金不断周转使用,时间价值不断增加。
衡量资金时间价值的大小通常是用利息,其实质内容是社会资金的平均利润。
但是,我们在日常生活中所接触到的利息,比如银行存、贷款利息,除了包含时间价值因素之外,还包括通货膨胀等因素。
所以,我们分析时间价值时,一般以社会平均的资金利润为基础,而不考虑通货膨胀和风险因素。
资金的时间价值有两种表现形式,即相对数和绝对数。
相对数即时间价值率,是指没有风险和通货膨胀的平均资金利润率或平均报酬率;绝对数即时间价值额,是指资金在运用过程中所增加的价值数额,即一定数额的资金与时间价值率的乘积。
国库券利率,银行存、贷款利率,各种债券利率,都可以看做是投资报酬率,然而它们并非时间价值率,只有在没有风险和通货膨胀情况下,这些报酬才与时间价值率相同。
由于国债的信誉度最高、风险最小,所以如果通货膨胀率很低就可以将国债利率视同时间价值率。
为了便于说明问题,在研究、分析时间价值时,一般以没有风险和通货膨胀的利息率作为资金的时间价值, 货币的时间价值是公司资金利润率的最低限度。
二、货币时间价值的计算由于资金具有时间价值,因此同一笔资金,在不同的时间,其价值是不同的。
计算资金的时间价值,其实质就是不同时点上资金价值的换算。
它具体包括两方面的内容:一方面,是计算现在拥有一定数额的资金,在未来某个时点将是多少数额,这是计算终值问题;另一方面,是计算未来时点上一定数额的资金,相当于现在多少数额的资金,这是计算现值问题。
资金时间价值的计算有两种方法:一是只就本金计算利息的单利法;二是不仅本金要计算利息,利息也能生利,即俗称“利上加利”的复利法。
相比较而言,复利法更能确切地反映本金及其增值部分的时间价值。
计算货币时间价值量,首先引入“现值”和“终值”两个概念表示不同时期的货币时间价值。
现值,又称本金,是指资金现在的价值。
终值,又称本利和,是指资金经过若干时期后包括本金和时间价值在内的未来价值。
通常有单利终值与现值、复利终值与现值、年金终值与现值。
(一)单利终值与现值单利是指只对借贷的原始金额或本金支付(收取)的利息。
我国银行一般是按照单利计算利息的。
在单利计算中,设定以下符号:P──本金(现值);i──利率;I──利息;F──本利和(终值);t──时间。
1.单利终值。
单利终值是本金与未来利息之和。
其计算公式为:F=P+I=P+P×i×t=P(1+ i×t)例:将100元存入银行,利率假设为10%,一年后、两年后、三年后的终值是多少?(单利计算)一年后:100×(1+10%)=110(元)两年后:100×(1+10%×2)=120(元)三年后:100×(1+10%×3)=130(元)2.单利现值。
单利现值是资金现在的价值。
单利现值的计算就是确定未来终值的现在价值。
例如公司商业票据的贴现。
商业票据贴现时,银行按一定利率从票据的到期值中扣除自借款日至票据到期日的应计利息,将余款支付给持票人。
贴现时使用的利率称为贴现率,计算出的利息称为贴现息,扣除贴现息后的余额称为贴现值即现值。
单利现值的计算公式为:P=F-I=F-F×i×t=F×(1-i×t)例:假设银行存款利率为10%,为三年后获得20000现金,某人现在应存入银行多少钱?P=20000×(1-10%×3)=14000(元)(二)复利终值与现值复利,就是不仅本金要计算利息,本金所生的利息在下期也要加入本金一起计算利息,即通常所说的“利滚利”。
在复利的计算中,设定以下符号:F──复利终值;i──利率;P──复利现值;n──期数。
1.复利终值复利终值是指一定数量的本金在一定的利率下按照复利的方法计算出的若干时期以后的本金和利息。
例如公司将一笔资金P存入银行,年利率为i,如果每年计息一次,则n年后的本利和就是复利终值。
如图1。
F=?图1 复利终值示意图如图1所示,一年后的终值为:F1=P+P×i=P×(1+ i)两年后的终值为:F2=F1+ F1×i=F1×(1+ i)=P×(1+ i)(1+ i)=P×(1+ i)2┇由此可以推出n年后复利终值的计算公式为:F=P×(1+ i)n例:将100元存入银行,利率假设为10%,一年后、两年后、三年后的终值是多少?(复利计算)一年后:100×(1+10%)=110(元)两年后:100×(1+10%)2=121(元)三年后:100×(1+10%)3=133.1(元)复利终值公式中,(1+ i)n称为复利终值系数,用符号(F/P,i,n)表示。
例如(F/P,8%,5),表示利率为8%、5期的复利终值系数。
复利终值系数可以通过查“复利终值系数表”(见教材附表)获得。
通过复利系数表,还可以在已知F,i的情况下查出n;或在已知F,n的情况下查出i。
2.复利现值复利现值是指未来一定时间的特定资金按复利计算的现在价值。
即为取得未来一定本利和现在所需要的本金。
例如,将n年后的一笔资金F,按年利率i折算为现在的价值,这就是复利现值。
如图2。
F图2 复利现值示意图由终值求现值,称为折现,折算时使用的利率称为折现率。
复利现值的计算公式为:例:A钢铁公司计划4年后进行技术改造,需要资金120万元,当银行利率为5%时,公司现在应存入银行的资金为:P=F×(1+ i)-n=1 200 000×(1+5%)-4=1 200 000×0.8227=987 240(元)公式中(1+ i)-n称为复利现值系数,用符号(P/F,i,n)表示。
例如(P/F ,5%,4),表示利率为5%,4期的复利现值系数。
与复利终值系数表相似,通过现值系数表在已知i,n的情况下查出P;或在已知P,i的情况下查出n;或在已知P,n的情况下查出i。
(三)年金终值与现值年金是指一定时期内一系列相等金额的收付款项。
如分期付款赊购,分期偿还贷款、发放养老金、支付租金、提取折旧等都属于年金收付形式。
按照收付的次数和支付的时间划分,年金可以分为普通年金、先付年金、递延年金和永续年金。
在年金的计算中,设定以下符号:A──每年收付的金额;i──利率;F──年金终值;P──年金现值;n──期数。
1.普通年金普通年金是指每期期末有等额的收付款项的年金,又称后付年金。
如图3所示。
0 1 2 3 4100 100 100 100图3 普通年金示意图图3,横轴代表时间,用数字标出各期的顺序号,竖线的位置表示支付的时刻,竖线下端数字表示支付的金额。
上图表示4期内每年100元的普通年金。
(1)普通年金的终值普通年金终值是指一定时期内每期期末等额收付款项的复利终值之和。
例如,按图3的数据,假如i=6%,第四期期末的普通年金终值的计算见图4。
0 1 2 3 4×(1+6%)0 =100×1=100×(1+6%)1=100×1.06=106×(1+6%)2=100×1.1236=112.36×(1+6%)3=100×1.191=119.10100×4.3746=437.46图4 普通年金终值计算示意图从4图可知,第一期期末的100元,有3个计息期,其复利终值为119.1元;第二期期末的100元,有2个计息期,其复利终值为112.36元;第三期期末的100元,有1个计息期,其复利终值为106元;而第四期期末的100元,没有利息,其终值仍为100元。
将以上四项加总得437.46元,即为整个的年金终值。
从以上的计算可以看出,通过复利终值计算年金终值比较复杂,但存在一定的规律性,由此可以推导出普通年金终值的计算公式。
根据复利终值的方法计算年金终值F 的公式为:等式两边同乘(1+i ),则有:公式(2)-公式(1):公式中, 通常称为“年金终值系数”,用符号(F/A ,i ,n )表示。
年金终值系数可以通过查“年金终值系数表”获得。
该表的第一行是利率i ,第一列是计息期数n 。
相应的年金系数在其纵横交叉之处。
例如,可以通过查表获得(F/A ,6%,4)的年金终值系数为4.3746,即每年年末收付1元,按年利率为6%计算,到第4年年末,其年金终值为4.3746元。
例:某公司每年在银行存入4 000元,计划在10年后更新设备,银行存款利率5%,到第10年末公司能筹集的资金总额是多少?在年金终值的一般公式中有四个变量F ,A ,i ,n ,已知其中的任意三个变量都可以计算出第四个变量。