第13讲 对数函数(学生版) 备战2021年新高考数学微专题讲义
- 格式:docx
- 大小:247.64 KB
- 文档页数:7
考向11 对数与对数函数【2022·全国·高考真题(文)】已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.【2022·全国·高考真题】设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++,当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11x xx g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<-时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 当211x -<<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<-时,()0h x <,所以当021x <<-时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.1.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.2.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、 商、幂再运算.|3.log (0b a a N b N a =⇔=>,且1)a ≠是解决有关指数、对数问题的有效方法,在运算中应注意互化.4.识别对数函数图象时,要注意底数a 以1为分界:当1a >时,是增函数;当01a <<时,是减函数.注意对数函数图象恒过定点(1,0),且以y 轴为渐近线.5.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.6.比较对数值的大小(1)若对数值同底数,利用对数函数的单调性比较 (2)若对数值同真数,利用图象法或转化为同底数进行比较 (3)若底数、真数均不同,引入中间量进行比较 7.解决对数函数的综合应用有以下三个步骤: (1)求出函数的定义域;(2)判断对数函数的底数与1的大小关系,当底数是含字母的代数式(包含单独一个字母)时,若涉及其单调性,就必须对底数进行分类讨论;(3)判断内层函数和外层函数的单调性,运用复合函数“同增异减”原则判断函数的单调性1.换底公式的两个重要结论 (1)1log ;log a b b a =(2)log log n a a nmb b m=.其中0a >,且1,0a b ≠>,且1,,R b m n ≠∈. 2.在第一象限内,不同底的对数函数的图象从左到右底数逐渐增大3.对数函数log (0a y x a =>,且1)a ≠的图象过定点(1,0),且过点1(,1),,1a a ⎛⎫- ⎪⎝⎭,函数图象只在第一、四象限.1.对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ; ③自然对数:以e 为底,记为ln N ; (3) 对数的性质和运算法则:①1log 0a =;log 1aa =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >); ③对数换底公式:log log log c a c bb a=; ④log ()log log a a a MN M N =+; ⑤log log log aa a MM N N=-; ⑥log log (m na a nb b m m=,)n R ∈; ⑦log a b a b =和log b a a b =; ⑧1log log a b b a=; 2.对数函数的定义及图像(1)对数函数的定义:函数 log a y x =(0a >且1)a ≠叫做对数函数. 对数函数的图象1a >01a <<图象 xyx =1(1,0)xa log Ox yx =1(1,0)xa log O性质定义域:(0)+∞,值域:R过定点(10),,即1x =时,0y = 在(0)+∞,上增函数 在(0)+∞,上是减函数 当01x <<时,0y <,当1x ≥时,0y ≥当01x <<时,0y >,当1x ≥时,0y ≤1.(2022·全国·模拟预测)已知23a=,21log 102b =, 1.012c =,则a ,b ,c 的大小关系为( )A .b c a >>B .b a c >>C .c b a >>D .c a b >>【答案】C 【解析】 【分析】利用指对互化以及指对函数的性质进行比较即可. 【详解】由2log 3log 10log 162a b =<=<,122c >=,可得c b a >>. 故选:C.2.(2022·河南·模拟预测(文))已知0.30.2a -=,0.2log 0.3b =,2log 0.3c =,则( ) A .b a c >> B .a c b >>C .c a b >>D .a b c >>【答案】D 【解析】 【分析】分别判断出每个数的范围,然后比较即可. 【详解】因为0.30.21->,0.20log 0.31<<,2log 0.30<,所以a b c >>. 故选:D.3.(2022·全国·模拟预测(文))已知lg 20.301≈,302用科学记数法表示为302 1.0710m =⨯,则m 的值约为( ) A .8 B .9C .10D .11【答案】B 【解析】 【分析】根据题意得30lg 2lg1.07m =+,再分析求解即可. 【详解】因为lg 20.301≈,302 1.0710m =⨯,所以30lg 2lg1.0710m =⨯, 所以30lg 2lg1.07lg10m =+,所以30lg 2lg1.07m =+, 又lg1.07无限接近于0,所以30lg 2300.3019.039m ≈=⨯=≈. 故选:B.4.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:()13=x f x ,()243x f x =⨯,()385log 53log 2xf x =⋅⋅,则( )A .()1f x ,()2f x ,()3f x 为“同形”函数B .()1f x ,()2f x 为“同形”函数,且它们与()3f x 不为“同形”函数C .()1f x ,()3f x 为“同形”函数,且它们与()2f x 不为“同形”函数D .()2f x ,()3f x 为“同形”函数,且它们与()1f x 不为“同形”函数 【答案】A 【解析】 【分析】根据题中“同形”函数的定义和2()f x 、3()f x 均可化简成以3为底的指数形式,可得答案. 【详解】解:()33log 4log 4243333x x xf x +=⨯=⨯=,()518385813log 5g lo l log 23lo 233g 53og 23x x x x x f x -=⋅⋅=⋅⋅==⋅⋅=,故2()f x ,3()f x 的图象可分别由1()3x f x =的图象向左平移3log 4个单位、向右平移1个单位得到, 故()1f x ,()2f x ,()3f x 为“同形”函数. 故选:A .5.(2022·山东·德州市教育科学研究院三模)已知对数函数()f x 的图像经过点1,38A ⎛⎫- ⎪⎝⎭与点(16,)B t ,0.1log a t =,0.2t b =,0.1c t =,则( )A .c a b <<B .b a c <<C .a b c <<D .c b a <<【答案】C 【解析】【分析】根据对数函数可以解得2a =,4t =,再结合中间值法比较大小. 【详解】设()()log 0,1a f x x a a =>≠,由题意可得:1log 38a =-,则2a = ∴log 164a t ==0.1log 40a =<,()40.20,1b =∈,0.141c =>∴a b c << 故选:C .6.(2022·河南·平顶山市第一高级中学模拟预测(文))已知函数22()ln(1)2f x x x x =++,若()9f a =,则()f a -=( ) A .5- B .9- C .13- D .15-【答案】A 【解析】 【分析】构建()()2g x f x =-,根据奇偶性定义可证()g x 是定义在R 上的奇函数,利用奇函数理解运算. 【详解】令22()()21)g x f x x x x =-=+, 222222()()ln(()1)ln(ln(1)()1g x x x x x x x x g x x x-=--+==-+=-++,()g x ∴是R 上的奇函数,()()0g a g a ∴-+=,即()2()20f a f a --+-=, 又()9f a =,所以()5f a -=-. 故选:A .7.(2022·青海·海东市第一中学模拟预测(理))已知函数()24log 1f x a x ⎛⎫=- ⎪+⎝⎭,若()1f x +是奇函数,则实数a =______. 【答案】1 【解析】 【分析】利用奇函数的性质(1)(1)f x f x -+=-+列方程求参数. 【详解】由题意,(1)(1)f x f x -+=-+,即2244log log 22a a x x ⎛⎫⎛⎫-=-- ⎪ ⎪-+⎝⎭⎝⎭, 所以242224a ax x x a ax --+=--+,化简得()22211a a ⎧-=⎪⎨=⎪⎩,解得1a =. 故答案为:18.(2022·福建·三明一中模拟预测)写出一个满足对定义域内的任意x ,y ,都有()()()f xy f x f y =+的函数()f x :___________.【答案】()ln f x x =(答案不唯一) 【解析】 【分析】利用对数的运算性质可知函数()ln f x x =符合题意. 【详解】若函数()ln f x x =,则()()ln ln ln ()()f xy xy x y f x f y ==+=+满足题意, 故答案为:()ln f x x =(答案不唯一)1.(2022·河南安阳·模拟预测(理))已知0.3211log 0.3,,25a b c ⎛⎫=== ⎪⎝⎭,则( )A .a b c <<B .b c a <<C .c b a <<D .a c b <<【答案】D 【解析】 【分析】根据给定条件,利用指数函数、对数函数单调性,借助“媒介”数比较作答. 【详解】函数2log y x =在(0,)+∞上单调递增,00.31<<,则22log 0.3log 10a =<=,函数1()2x y =在R 上单调递减,0.31<,0.311()22b =>,而5 2.51052c <=<=,所以a c b <<.故选:D2.(2022·青海·模拟预测(理))设log 2020a =2020ln 2021b =,120212020c =,则a 、b 、c 的大小关系为( ) A .c a b >> B .a c b >> C .a b c >> D .c b a >>【答案】A 【解析】 【分析】利用指数函数、对数函数的性质,再借助“媒介”数比较大小作答. 【详解】函数2021log ,ln y x y x ==在(0,)+∞上都是增函数,120202021,即01a <<,2020012021,则0b <,函数2020x y =在R 上单调递增,而102021>,则1202102012c =>, 所以c a b >>. 故选:A3.(2022·江苏无锡·模拟预测)已知1333,e ,(93ln 3)e a b c --===-,则a ,b ,c 的大小为( ) A .a b c << B .a c b <<C .c a b <<D .b c a <<【答案】C 【解析】 【分析】根据给定条件,构造函数ln ()(e)xf x x x=≥,利用函数的单调性比较大小作答. 【详解】 令函数ln ()(e)x f x x x=≥,当e x >时,求导得:()21ln 0xf x x '-=<, 则函数()f x 在[e,)+∞上单调递减,又ln 3(3)3a f ==,ln e (e)eb f ==,3333e ln3(3ln 3)e 3()e e 33c f -===, 显然3e e 33<<,则有3e ()(3)(e)3f f f <<,所以c a b <<.故选:C 【点睛】思路点睛:某些数或式大小比较问题,探讨给定数或式的内在联系,构造函数,分析并运用函数的单调性求解.4.(2022·全国·模拟预测)“熵”是用来形容系统混乱程度的统计量,其计算公式为1ln i B ni i p p S k ==-∑,其中i表示所有可能的微观态,i p 表示微观态i 出现的概率,B k 为大于0的常数.则在以下四个系统中,混乱程度最高的是( ) A .1212p p ==B .113p =,223p =C .12331p p p ===D .116p =,213p =,312p =【答案】C 【解析】 【分析】对选项逐一验证,分别计算系统的混乱程度,借助对数函数比较大小,计算得解. 【详解】对选项逐一验证(不考虑负号和玻尔兹曼常数). A 选项:系统的混乱程度11111ln ln ln 2ln 22222A S +=-=;B 选项:系统的混乱程度311222ln ln ln 2ln 3333334B S +=-=C 选项:系统的混乱程度1111111ln ln ln ln 3ln 3333333c S ++=-=;D 选项:系统的混乱程度3331111111ln ln ln ln 2ln 3433466332232234DS ++=--=--,所以A C S S >,B C S S >,C D S S >,所以C S 最小,从而C 选项对应的系统混乱程度最高. 故选:C.5.(2022·辽宁实验中学模拟预测)已知实数a ,b 满足()2log 1,01a a b a +=<<,则21log 4b a a -的最小值为( ) A .0 B .1- C .1 D .不存在【答案】A 【解析】 【分析】由题设条件可得2log 1a b a =-,从而利用换底公式的推论可得21log 1b a a =-,代入要求最小值的代数式中,消元,利用均值不等式求最值 【详解】2log 1a a b +=2log 1a b a ⇒=-21log 1b a a ⇒=- 又01a <<,则2011a <-<()()22211log 11441b a a a a -=+---()()22111041a a ≥⨯-=- 当且仅当()221141a a =--即2a = 故选:A6.(2022·全国·模拟预测(理))已知10a b a>>>,则下列结论正确的是( ) A .1a bb a -⎛⎫> ⎪⎝⎭B .log log a a bba b <C .log log a b baa b <D .11b a a b-<- 【答案】D 【解析】 【分析】根据不等式的性质,结合指数函数、对数函数的单调性、作差法比较大小等知识,逐一分析各个选项,即可得答案. 【详解】 因为10a b a>>>,所以1a >, 对于A :01b a <<,0a b ->,所以01a bb b a a -<⎛⎫⎛⎫⎪⎪⎝⎝⎭=⎭,故A 错误; 对于B :1ab>,所以log a b y x =在(0,)+∞上为增函数,又a b >,所以log log a a bba b>,故B 错误;对于C :log log log log log a b a a a babbbb a b a ab-=+=,因为1ab>,1ab >,所以log log 10a a b b ab =>,所以log log a b baa b>,故C 错误;对于D :11111()ab b a b a a b a b b a ab -⎛⎫⎛⎫---=-+-=- ⎪ ⎪⎝⎭⎝⎭, 因为0a b ->,1ab >, 所以111()0ab b a a b a b ab -⎛⎫⎛⎫---=-< ⎪ ⎪⎝⎭⎝⎭,即11b a a b -<-,故D 正确. 故选:D7.(2022·北京·北大附中三模)已知函数()2log 1f x x x =-+,则不等式()0f x <的解集是( ) A .()1,2 B .()(),12,-∞+∞C .()0,2D .()()0,12,⋃+∞【答案】D 【解析】 【分析】由()0f x <可得2log 1x x <-,在同一坐标系中作出两函数的图象,即可得答案. 【详解】解:依题意,()0f x <等价于2log 1x x <-,在同一坐标系中作出2log y x =,1y x =-的图象,如图所示:如图可得2log 1x x <-的解集为:()()0,12,⋃+∞. 故选:D.8.(2022·湖北省仙桃中学模拟预测)已知(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-,则2(|log |)0f x <的解集为( )A .2[(1,2] B .2(2) C .2((1,2) D .2(2,)+∞ 【答案】C 【解析】 【分析】先求出函数的解析式,令2log t x =,把原不等式转化为()0f t t <⎧⎨≥⎩,利用单调性法解不等式即可得到答案.【详解】因为(),()y f x x R =∈是奇函数,当0x <时,312()8log ()f x x x =+-;所以当0x =时,()0f x =;当0x >时,则0x -<,所以()312()8log f x x x -=-+.因为()y f x =是奇函数,所以()()312()8log f x f x x x -=-=-+,所以()3128log f x x x =-.即当0x >时,()3128log f x x x =-.综上所述:()()3123128log ,00,08log ,0x x x f x x x x x ⎧+-<⎪⎪==⎨⎪->⎪⎩. 令2log t x =,则2log 0t x =≥,所以不等式2(|log |)0f x <可化为:()00f t t <⎧⎨≥⎩. 当0=t 时,()0f t =不合题意舍去.当0t >时,对于()3128log f x x x =-.因为3y x =在()0,+∞上递增,12log y x=-在()0,+∞上递增,所以()3128log f x x x =-在()0,+∞上递增.又3121118log 0222f ⎛⎫⎛⎫=⨯-= ⎪ ⎪⎝⎭⎝⎭,所以由()00f t t <⎧⎨≥⎩可解得:102t <<,即210log 2x <<,解得:2((1,2)x ∈.故选:C9.(2022·全国·哈师大附中模拟预测(理))函数()ln f x x =,其中()()2f x f y +=,记()()()11*ln ln ln ln nn n nn S x xy xyy n N --=++++∈,则202211i iS==∑( )A .20222023B .20232022C .20234044 D .40442023【答案】A 【解析】 【分析】由条件结合对数运算性质可求xy ,再结合倒序相加法求n S ,利用裂项相消法求202211i iS =∑. 【详解】()()ln ln ln()2f x f y x y xy +=+==,∴2e xy =()()11ln ln ln ln n n n n n S x x y xy y --=++++,()()11ln ln ln ln n n n n n S y xy x y x --=++++()2(1)ln (1)ln()2(1)n n n S n x y n n xy n n =+=+=+,∴(1)n S n n =+2022202220221111111120221(1)120232023i i i iS i i i i ===⎛⎫==-=-= ⎪++⎝⎭∑∑∑, 故选:A .10.(2022·吉林·东北师大附中模拟预测(理))已知函数()ln f x x =,若0a b <<,且()()f a f b =,则2+a b 的取值范围是______. 【答案】()3,+∞ 【解析】 【分析】由()()f a f b =,0a b <<可得01,1a b <<>,ln ln a b -=,得1b a =,所以22a b a a+=+,然后构造函数2()(01)g x x x x=+<<,利用可求出其单调区间,从而可求出其范围【详解】()ln f x x =的图象如图,因为()()f a f b =, 所以ln ln a b =, 因为0a b <<, 所以ln 0a <,ln 0b >, 所以01,1a b <<>, 所以ln ln ,ln ln a a b b =-=,所以ln ln a b -=,所以ln ln ln()0a b ab +==, 所以1ab =,则1b a=, 所以22a b a a+=+, 令2()(01)g x x x x =+<<,则22()1x g x x x '-=-=,当01x <<时,()0g x '<, 所以()g x 在(0,1)上递减, 所以()(1)123g x g >=+=, 所以23+>a b ,所以2+a b 的取值范围为()3,+∞, 故答案为:()3,+∞11.(2022·青海·大通回族土族自治县教学研究室三模(文))若0a >,0b >,()lg lg lg 2a b a b +=+,则22a b b+的最小值为___________. 【答案】222+ 【解析】 【分析】由()lg lg lg 2a b a b +=+可得2ab a b =+,变为211ba+=,则可利用22222122a b a a a bb b b b b b a b a+⎛⎫=+=++=++ ⎪⎝⎭,结合基本不等式,即可求得答案. 【详解】∵()lg lg lg 2a b a b +=+,∴2ab a b =+,0a >,0b >,∴211ba+=,∴22222122222222a b a a a ba b b b b b b b a b ab a +⎛⎫=+=++=++≥⋅=+ ⎪⎝⎭ 2a b =,即21a =,22b = ∴22a b b+的最小值为222+故答案为:222+12.(2022·云南师大附中模拟预测(理))给出下列命题:①3eln 242<1515<;③ln eππ<ln 332<,其中真命题的序号是______.【答案】①②④ 【解析】 【分析】 构造函数ln ()(0)xf x x x=>,借助函数的单调性分别比较大小即可. 【详解】 构造函数ln ()(0)x f x x x =>,所以21ln ()xf x x -'=,得,当0e x <<时,()0f x '>;当e x >时,()0f x '<,于是()f x 在(0e),上单调递增,在(e )+∞,上单调递减. 对于①,112ln e 22ln e3eln 2423e e e e 42424222<<⇒<<⇒<,即(22)(e)f f <,又e 22<据()f x 的单调性知(22)(e)f f <成立,故①正确;对于②,152ln 15ln 2ln 15215152ln15ln 2ln 22151515<<⇒<⇒<ln 22ln 2ln 42224==⨯,所以ln 4ln 15415<(4)(15)f f <,又415e >,据()f x 的单调性知(4)(15)f f <成立,故②正确; 对于③,π2ln πln πe πe πe<<<⇒ ln πln πln eπ2e πe ,即(π)(e)f f <e πe ,据()f x 的单调性知(π(e)f f >成立,故③错误;对于④,2ln 3ln 332ln 2ln 233<< ln 3ln 223<,即(3)(2)f f <32e <<,据()f x 的单调性可知(3)(2)f f <成立,故④正确. 故答案为:①②④.13.(2022·浙江绍兴·模拟预测)已知函数()()2()log 9,()log x a a f x a g x x ax =-=-,若对任意1[1,2]x ∈,存在2[3,4]x ∈使得()()12f x g x ≥恒成立,则实数a 的取值范围为____________. 【答案】()()0,11,3【解析】 【分析】恒成立存在性共存的不等式问题,需要根据题意确定最值比大小解不等式即可. 【详解】根据题意可得只需()()12min min f x g x ≥即可,由题可知a 为对数底数且29001a a ->⇒<<或13a <<.当01a <<时,此时(),()f x g x 在各自定义域内都有意义,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递减,所以()21min (2)log (9)a f x f a ==-,()2min (4)log (164)a g x g a ==-,所以22log (9)log (164)9164a a a a a a -≥-⇒-≤-,即2470a a -+≥,可得01a <<;当13a <<时,由复合函数单调性可知()f x 在[]1,2上单调递减,()g x 在[]3,4上单调递增,所以()21min (2)log (9)a f x f a ==-,()2min (3)log (93)a g x g a ==-,所以22log (9)log (93)993a a a a a a -≥-⇒-≥-,即230a a -≤,可得13a <<.综上:()()0,11,3a ∈⋃.故答案为:()()0,11,3.14.(2022·四川·内江市教育科学研究所三模(文))已知函数()21log 22x xf x ⎛⎫=+ ⎪⎝⎭,数列{}n a 是公差为2的等差数列,若()()()()112233440a f a a f a a f a a f a +++=,则数列{}n a 的前n 项和n S =___________. 【答案】24n n - 【解析】 【分析】利用定义判断()f x 的奇偶性,并确定值域范围,根据已知条件易得14230a a a a +=+=,进而求出首项,根据等差数列前n 项和公式求n S . 【详解】由2211()log (2)log (2)()22xxx xf x f x ---=+=+=且定义域为R , 所以()f x 为偶函数,而1122222x x x x +≥⋅=,当0x =时等号成立,所以在R 上()1f x ≥恒成立,故要使()()()()112233440a f a a f a a f a a f a +++=,又{}n a 是公差为2的等差数列,所以14230a a a a +=+=,则13a =-,故23(1)4n n n n n S n =-+-=-.故答案为:24n n -. 【点睛】关键点点睛:判断函数的奇偶性,根据其对称性确定1234,,,a a a a 的数量关系. 15.(2022·山西运城·模拟预测(文))若221ee,ln 12x x y y-=-=,则xy =__________. 【答案】e2##1e 2【解析】 【分析】 将221e2x x -=变形为2ln22x x +=,e ln 1y y -=换元整理为ln 2t t +=,构造函数()ln f x x x =+,由()f x 单增得到2x t =即可求解. 【详解】由221e2x x -=,两边取以e 为底的对数,得122ln ln 2x x -+=,即2ln22x x +=. 由e ln 1y y -=,令e t y =,则ey t =,所以e ln 1t t-=,即ln 2t t +=.设()ln f x x x =+,则()110f x x=+>',所以()ln f x x x =+在()0,∞+上单调递增. 由2ln22x x +=以及ln 2t t +=,则2x t =,又e t y =,所以e 2xy =. 故答案为:e2.1.(2022·全国·高考真题(文))已知910,1011,89m m m a b ==-=-,则( ) A .0a b >> B .0a b >> C .0b a >> D .0b a >>【答案】A 【解析】 【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m=可得9lg10log 101lg 9m ==>,而()222lg9lg11lg99lg9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg9lg10lg8lg9>,即8log 9m >, 所以8log 989890m b =-<-=.综上,0a b >>. 故选:A.2.(2022·全国·高考真题)设0.110.1e ,ln 0.99a b c ===-,,则( )A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C 【解析】 【分析】构造函数()ln(1)f x x x =+-, 导数判断其单调性,由此确定,,a b c 的大小. 【详解】设()ln(1)(1)f x x x x =+->-,因为1()111x f x x x'=-=-++, 当(1,0)x ∈-时,()0f x '>,当,()0x ∈+∞时()0f x '<,所以函数()ln(1)f x x x =+-在(0,)+∞单调递减,在(1,0)-上单调递增, 所以1()(0)09f f <=,所以101ln 099-<,故110ln ln 0.999>=-,即b c >,所以1()(0)010f f -<=,所以91ln +01010<,故1109e 10-<,所以11011e 109<,故a b <,设()e ln(1)(01)xg x x x x =+-<<,则()()21e 11()+1e 11xx x g x x x x -+'=+=--, 令2()e (1)+1x h x x =-,2()e (21)x h x x x '=+-,当021x <<时,()0h x '<,函数2()e (1)+1x h x x =-单调递减, 211x <<时,()0h x '>,函数2()e (1)+1x h x x =-单调递增, 又(0)0h =,所以当021x <<时,()0h x <,所以当021x <<时,()0g x '>,函数()e ln(1)x g x x x =+-单调递增, 所以(0.1)(0)0g g >=,即0.10.1e ln 0.9>-,所以a c > 故选:C.3.(2022·浙江·高考真题)已知825,log 3ab ==,则34a b -=( )A .25B .5C .259 D .53【答案】C 【解析】 【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 【详解】因为25a =,821log 3log 33b ==,即323b =,所以()()22323232452544392a a a b b b -====. 故选:C.4.(2021·天津·高考真题)设0.3212log 0.3,log 0.4,0.4a b c ===,则a ,b ,c 的大小关系为( )A .a b c <<B .c a b <<C .b c a <<D .a c b <<【答案】D 【解析】 【分析】根据指数函数和对数函数的性质求出,,a b c 的范围即可求解. 【详解】22log 0.3log 10<=,0a ∴<, 122225log 0.4log 0.4log log 212=-=>=,1b ∴>, 0.3000.40.41<<=,01c ∴<<,a cb ∴<<.故选:D.5.(2020·全国·高考真题(理))若2233x y x y ---<-,则( ) A .ln(1)0y x -+> B .ln(1)0y x -+< C .ln ||0x y -> D .ln ||0x y -<【答案】A 【解析】 【分析】将不等式变为2323x x y y ---<-,根据()23t tf t -=-的单调性知x y <,以此去判断各个选项中真数与1的大小关系,进而得到结果. 【详解】由2233x y x y ---<-得:2323x x y y ---<-,令()23t tf t -=-,2x y =为R 上的增函数,3x y -=为R 上的减函数,()f t ∴为R 上的增函数,x y ∴<,0y x ->,11y x ∴-+>,()ln 10y x ∴-+>,则A 正确,B 错误;x y -与1的大小不确定,故CD 无法确定.故选:A. 【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.6.(2020·全国·高考真题(文))设3log 42a =,则4a -=( ) A .116B .19C .18D .16【答案】B 【解析】 【分析】根据已知等式,利用指数对数运算性质即可得解 【详解】由3log 42a =可得3log 42a=,所以49a =,所以有149a-=, 故选:B. 【点睛】本题考查的是有关指对式的运算的问题,涉及到的知识点有对数的运算法则,指数的运算法则,属于基础题目.7.(2019·天津·高考真题(理))已知5log 2a =,0.5log 0.2b =,0.20.5c =,则,,a b c 的大小关系为 A .a c b << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】利用10,,12等中间值区分各个数值的大小.【详解】551log 2log 52a =<, 0.50.5log 0.2log 0.252b =>=, 10.200.50.50.5<<,故112c <<, 所以a c b <<. 故选A . 【点睛】本题考查大小比较问题,关键选择中间量和函数的单调性进行比较.8.(2019·全国·高考真题(文))已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 【解析】 【分析】运用中间量0比较,a c ,运用中间量1比较,b c 【详解】22log 0.2log 10,a =<=0.20221,b =>=0.3000.20.21,<<=则01,c a c b <<<<.故选B .【点睛】本题考查指数和对数大小的比较,渗透了直观想象和数学运算素养.采取中间变量法,利用转化与化归思想解题.9.(2019·全国·高考真题(理))若a >b ,则 A .ln(a −b )>0 B .3a <3b C .a 3−b 3>0 D .│a │>│b │【答案】C 【解析】 【分析】本题也可用直接法,因为a b >,所以0a b ->,当1a b -=时,ln()0a b -=,知A 错,因为3x y =是增函数,所以33a b >,故B 错;因为幂函数3y x =是增函数,a b >,所以33a b >,知C 正确;取1,2a b ==-,满足a b >,12a b =<=,知D 错.【详解】取2,1a b ==,满足a b >,ln()0a b -=,知A 错,排除A ;因为9333a b =>=,知B 错,排除B ;取1,2a b ==-,满足a b >,12a b =<=,知D 错,排除D ,因为幂函数3y x =是增函数,a b >,所以33a b >,故选C . 【点睛】本题主要考查对数函数性质、指数函数性质、幂函数性质及绝对值意义,渗透了逻辑推理和运算能力素养,利用特殊值排除即可判断.10.(2016·全国·高考真题(理))已知432a =,254b =,1325c =,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为4133216a ==,2155416b ==,1325c =, 因为幂函数13y x =在R 上单调递增,所以a c <, 因为指数函数16x y =在R 上单调递增,所以b a <, 即b <a <c . 故选:A.11.(2018·天津·高考真题(文))已知13313711log ,(),log 245a b c ===,则,,a b c 的大小关系为A .a b c >>B .b a c >>C .c b a >>D .c a b >>【答案】D 【解析】 【详解】分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a ,b ,c 的大小关系.详解:由题意可知:3337392log log log <<,即12a <<,13111044⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭=,即01b <<, 133317552log log log =>,即c a >,综上可得:c a b >>.本题选择D 选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 12.(2016·全国·高考真题(文))已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a << D .c a b <<【答案】A 【解析】 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小. 13.(2016·全国·高考真题(文))若a >b >0,0<c <1,则 A .log a c <log b c B .log c a <log c b C .a c <b c D .c a >c b【答案】B 【解析】 【详解】试题分析:对于选项A ,a b 1gc 1gclog c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a ba b c c==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用x y c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较.14.(2016·浙江·高考真题(理))已知a >b >1.若log a b+log b a=52,a b =b a ,则a=___,b=____.【答案】 4 2 【解析】 【详解】试题分析:设log ,1b a t t =>则,因为21522t t a b t +=⇒=⇒=, 因此22222, 4.b a b b a b b b b b b a =⇒=⇒=⇒== 指数运算,对数运算. 在解方程5log log 2a b b a +=时,要注意log 1b a >,若没注意到log 1b a >,方程5log log 2a b b a +=的根有两个,由于增根导致错误15.(2015·北京·高考真题(文))32-,123,2log 5三个数中最大数的是 . 【答案】2log 5 【解析】 【详解】 31218-=<,12331=>,22log 5log 423>>>2log 5最大.。
第13讲:对数函数一、课程标准1、通过具体实例,直观了解对数函数模型所刻画的数量关系,理解对数函数的概念.2、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象.3、探索并了解对数函数的单调性与特殊点.4、知道指数函数y=,与对数函数y=l.驯互为反函数〔0>0,疗1〕.二、根底知识回忆1、对数函数7=1.曲武心0,且启1〕的图象与性质2、反函数指数函数、=优3>0,且.壬1〕与对数函数>=1.耿xQ>0,且舁1〕互为反函数,它们的图象关于直线汇工对称. 对数函数的图象与底数大小的比拟3、如图,作直线j,=l,那么该直线与四个函数图象交点的横坐标为相应的底数.故O<c<d<l〈a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.三、自主热身、归纳总结1、函数f(x)=/o3(一屋+25)的值域为(8)A. (-8, 5)B. (-8, 2_C. G,4-00)D. [I,+8)2、假设bga2V/oG2V0,那么以下结论正确的选项是(8)A. 0<a<b<l B, 0<b<a<lC. a>b>lD.b>a>l3、函数/*) = log式W—3x - 4)的单调减区间为() 3 3A. (-03,-1)B.(一8,一/)C.(展+s)D. (4,-HX))4、(2021 秋•荷泽期末)函数f(x) = loga(x + l) , g(x) = k)ga(l-x)3>0 , 〞工(,那么( ) A.函数f(x) + ga)的定义域为B.函数/*) +晨幻的图象关于),轴对称C.函数f*) + g(x)在定义域上有最小值0D.函数f(力-g(%)在区间(0,1)上是减函数5、(2021苏州期末)4a=2, /ogax=2a,那么正实数x的值为.6、(2021盐城三模).函数〃x) = ln(l — JT7)的定义域为▲.四、例题选讲考点一对数函数的性质及其应用例1、( 1)函数y =上匕上士的定义域为()4%+1)A. (-1,3]B. ( - 1,0) U (0,3]D. [.1,0)0(03]c. [-1,3]1(2) a=log2e, b=ln2, c=logl,,那么 a, b, c 的大小关系为( )2A. a>b>cB. b>a>cC. c>b>aD. c>a>blog2X, X>0,(3)设函数&)=jlogl (—X), xVO.假设大GX-G,那么实数a的取值范围是() 2A. (一 1, 0)U(0> 1)B.(-8, -1)U(1, +s)C. (-1, O)U(1, +oo)D. (一8, 一 1)U(O, 1)变式1、(D定义在R上的函数危)=2厂叫一 1(加为实数)为偶函数,记4={logo.53),6=4log25),c=yQ〞.,那么a, b, c的大小关系为:’3〞1,理0,(2)函数*0= log.,xX),那么不等式“x)>l的解集为 : 3(3)假设函数危)=1.8浸_3)(.=+4)在[-1,1]上是单调增函数,那么实数.的取值范围是___________________ . 变式2、/(比)=/.呢(.7+1) +从(.>0,.装1)是偶函数,那么( )1 1 1 1A.b =弓且f(a)〉/(-) B・ b=- 7且f(a) < /(-)2 a Z a1 11 1 11C. b =+ -) > H-)D. b=--Kf(a+-)<f(-)Z a b 1 a b方法总结:对数函数的性质有着十分广泛的应用,常见的有:比拟大小,解不等式,求函数的单调区间和值域、最值等等.(1)对数值大小比拟的主要方法:①化为同底数后利用函数的单调性:②化为同真数后利用图像比拟;③借用中间量(0或1等)进行估值比拟.(2)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a的取值范围,并在必要时须分底数0<Z7<l和两种情形进行分类讨论,预防错解.考点二对数函数的图像及其应用例2 (1) [2021•潍坊一模]假设函数f(x)=ax-a (>0且岸1)在R上为减函数,那么函数y=log«k|-1)的图像可以是(D)(1)假设<1)=1,求"X)的单调区间;(2)是否存在实数4,使犬X)的最小值为0?假设存在,求出.的值:假设不存在,说明理由.变式 1、在函数f(x)= l°gl(x2-2ax+3)中.2(1)假设其在[- 1, +8)内有意义,求实数a的取值范围;(2)假设其在(-8, 1]内为增函数,求实数a的取值范围.1-mx变式2、己知f(x)=/g—"是奇函数.(1)求m的值及函数f(x)的定义域:(2)根据(1)的结果判断f(x)在(1, +8)上的单调性,并证实.方法总结:高考对对数函数的考查多以对数与对数函数为载体,考查对数的运算和对数函数的图像和性质的应用,且常与二次函数、方程、不等式等内容交汇命题.解决此类问题的关键是根据条件,将问题转化为(或构造)对数函数或对数型函数,再利用图像或性质求解.五、优化提升与真题演练1、/(x) = Ig(10+x) + lg(10-x),那么/(x)是()A.偶函数,且在(0/0)是增函数B.奇函数,且在(0』0)是增函数c.偶函数,且在〔0,10〕是减函数 D.奇函数,且在〔0,10〕是减函数2、己知函数/〔%〕=〔X-Q〕〔?-/〕〕〔其中.〕力的图象如下图,那么函数9〔乃=1.&@-"〕的图象大致是〔〕3、【2021年浙江06】在同一直角坐标系中,函数〕= ——,y=lo&〔x + _〕">0且方1〕的图象可能是〔〕4、(多项选择)函数/)=ln(x—2)+ln(6 — x),A.大、〕在〔2, 6〕上单调递增B.危〕在〔2, 6〕上的最大值为21n 2C.人、〕在〔2, 6〕上单调递减D.y=«x〕的图象关于直线x=4对称 5、〔多项选择〕在同一坐标系中,&〕=b+b与g〔x〕=logd的图象如图,那么以下关系不正确的选项是〔〕B.k>0, b>lc. 7G M1〕>0〔X>0〕D. x>l 时,危〕一蛉〕>06、〔2021浙江店考〕在同一直角坐标系中,函数y=/, y=log0Q+9〔.>0,且舁1〕的图象可能是〔〕7、【2021年江苏05】函数/〔x〕 =/.92%-1的定义域为 _________8、函数/〔x〕 =1 + log「为奇函数,那么实数.= ______________x \-x9、函数加〕=logj〔3-ax〕〔〃>0,且舁1〕.⑴当问0, 2]时,函数兀.恒有意义,求实数.的取值范围:〔2〕是否存在这样的实数.,使得函数大、〕在区间[1, 2]上为减函数,并且最大值为1?如果存在,试求出. 的值:如果不存在,请说明理由.。
第13讲:对数函数一、课程标准1、通过具体实例,直观了解对数函数模型所刻画的数量关系,理解对数函数的概念。
2、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象。
3、探索并了解对数函数的单调性与特殊点。
4、知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1)。
二、基础知识回顾1、对数函数y=log a x(a>0,且a≠1)的图象与性质2、反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.对数函数的图象与底数大小的比较3、如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.故0<c<d<1<a<b.由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.三、自主热身、归纳总结1、函数f(x)=log 2(-x 2+22)的值域为(B ) A . ⎝⎛⎭⎫-∞,32 B . ⎝⎛⎦⎤-∞,32C . ⎝⎛⎭⎫32,+∞D . ⎣⎡⎭⎫32,+∞【答案】B【解析】 由题意可得-x 2+22>0,即-x 2+22∈(0,22],得所求函数值域为⎝⎛⎦⎤-∞,32.故选B .2、若log a 2<log b 2<0,则下列结论正确的是(B ) A . 0<a <b <1 B . 0<b <a <1 C . a >b >1 D . b >a >1 【答案】B【解析】(方法1)由log a 2<log b 2<0,得 0<a 、b <1,且1log 2a <1log 2b ,即log 2b -log 2a log 2a·log 2b <0. 又log 2a <0,log 2b <0,得log 2a·log 2b >0, 从而log 2b -log 2a <0,即log 2b <log 2a. 又函数y =log 2x 是增函数,从而b <a.故选B .(方法2)在同一直角坐标系xOy 中作出满足条件的函数 y =log a x 与y =log b x 的图像,如图所示.B 正确,故选B .3、函数22()log (34)f x x x =--的单调减区间为( )A .(,1)-∞-B .3(,)2-∞-C .3(,)2+∞D .(4,)+∞【答案】A【解析】函数()()22log 34f x x x =--,所以 2340(4)(1)04x x x x x -->⇒-+>⇒>或1x <-,所以函数()f x 的定义域为4x >或1x <-,234y x x =--当3(,)2-∞时,函数是单调递减,而1x <-,所以函数()()22log 34f x x x =--的单调减区间为(),1-∞-,故本题选A 。
考点03 函数函数是高考每年的必考内容,函数一直是高考的热点和重点,客观题以考查函数的基本性质为主,解答题常与其他知识结合起来进行考查.一、函数及其性质1.函数的概念设A,B是两个非空数集,如果按照确定的法则f,对A中的任意数x,都有唯一确定的数y 与它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.2.函数的定义域、值域(1)函数y=f(x)自变量取值的范围(数集A)叫做这个函数的定义域;所有函数值构成的集合{y|y =f(x),x∈A}叫做这个函数的值域.(2)如果两个函数的定义域相同,并且对应法则完全一致,则这两个函数为相等函数.3.函数的表示法表示函数的常用方法有解析法、图象法和列表法.4.分段函数(1)在函数的定义域内,对于自变量x的不同取值区间,有着不同的对应法则,这种函数称为分段函数.(2)分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.5.函数的单调性(1)单调函数的定义增函数减函数定义设函数y=f(x)的定义域为A,区间M⊆A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当Δy=f(x2)-f(x1)>0时,就称函数y=f(x)在区间M上是增函数Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的(2)上是增函数或是减函数,上具有单调性,区间M称为单调区间.6.函数的最值前提设函数y=f(x)的定义域为I,如果存在实数M满足条件(1)对于任意x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0)=M(3)对于任意x∈I,都有f(x)≥M;(4)存在x0∈I,使得f(x0)=M结论M为最大值M为最小值7.函数的奇偶性奇偶性定义图象特点奇函数设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且f(-x)=-f(x),则这个函数叫做奇函数关于原点对称偶函数设函数y=g(x)的定义域为D,如果对D内的任意一个x,都有-x∈D,且g(-x)=g(x),则这个函数叫做偶函数关于y轴对称8.函数的周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期.二、一次函数、二次函数与指对幂函数的图象与性质1.幂函数(1)幂函数的定义一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数. (2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增; ③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减. 2.二次函数(1)二次函数解析式的三种形式: 一般式:f (x )=ax 2+bx +c (a ≠0).顶点式:f (x )=a (x -m )2+n (a ≠0),顶点坐标为(m ,n ). 零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0),x 1,x 2为f (x )的零点. (2)二次函数的图象和性质函数 y =ax 2+bx +c (a >0) y =ax 2+bx +c (a <0)图象 (抛物线)定义域 R值域 ⎣⎢⎡⎭⎪⎫4ac -b 24a ,+∞ ⎝⎛⎦⎥⎤-∞,4ac -b 24a对称轴 x =-b2a 顶点 坐标 ⎝ ⎛⎭⎪⎫-b 2a,4ac -b 24a奇偶性 当b =0时是偶函数,当b ≠0时是非奇非偶函数单调性在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是减函数; 在⎝ ⎛⎦⎥⎤-∞,-b 2a 上是增函数;在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是增函数 在⎣⎢⎡⎭⎪⎫-b 2a ,+∞上是减函数 3.根式(1)概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.(2)性质:(na )n=a (a 使na 有意义);当n 为奇数时,na n=a ,当n 为偶数时,na n=|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.4.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N +,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N +,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . 5.指数函数及其性质(1)概念:函数y =a x (a >0且a ≠1)叫做指数函数,其中指数x 是自变量,函数的定义域是R ,a 是底数.(2)指数函数的图象与性质a >10<a <1图象定义域 R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1; 当x <0时,0<y <1 当x <0时,y >1; 当x >0时,0<y <1 在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数6.对数的概念一般地,对于指数式a b =N ,我们把“以a 为底N 的对数b ”记作log a N ,即b =log a N (a >0,且a ≠1).其中,数a 叫做对数的底数,N 叫做真数,读作“b 等于以a 为底N 的对数”.7.对数的性质、换底公式与运算性质(1)对数的性质:①a log a N=N;②log a a b=b (a >0,且a≠1).(2)对数的运算法则如果a>0且a≠1,M>0,N>0,那么①log a(MN)=log a M+log a N;②log a MN=log a M-log a N;③log a M n=n log a M(n∈R);④log a m M n=nm log a M(m,n∈R,且m≠0).(3)换底公式:log b N=log a Nlog a b(a,b均大于零且不等于1).8.对数函数及其性质(1)概念:函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).(2)对数函数的图象与性质a>10<a<1图象性质定义域:(0,+∞)值域:R当x=1时,y=0,即过定点(1,0)当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0 在(0,+∞)上是增函数在(0,+∞)上是减函数9.反函数指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.10.利用描点法作函数的图象步骤:(1)确定函数的定义域;(2)化简函数解析式;(3)讨论函数的性质(奇偶性、单调性、周期性、对称性等);(4)列表(尤其注意特殊点、零点、最大值点、最小值点、与坐标轴的交点等),描点,连线.11.利用图象变换法作函数的图象 (1)平移变换(2)对称变换y =f (x )的图象―——————————―→关于x 轴对称y =-f (x )的图象; y =f (x )的图象―——————————―→关于y 轴对称y =f (-x )的图象; y =f (x )的图象――————————————→关于原点对称y =-f (-x )的图象;y =a x (a >0,且a ≠1)的图象――——————————→关于直线y =x 对称y =log a x (a >0,且a ≠1)的图象. (3)伸缩变换y =f (x )――———————————————————→纵坐标不变各点横坐标变为原来的1a (a >0)倍y =f (ax ).y =f (x )―————————————————————―→横坐标不变各点纵坐标变为原来的A (A >0)倍y =Af (x ).(4)翻折变换y =f (x )的图象――————————————→x 轴下方部分翻折到上方x 轴及上方部分不变y =|f (x )|的图象;y =f (x )的图象―————————————————―→y 轴右侧部分翻折到左侧原y 轴左侧部分去掉,右侧不变y =f (|x |)的图象.三、函数的综合运用1.函数的零点 (1)函数零点的概念如果函数y =f (x )在实数α处的值等于零,即f (α)=0,则α叫做这个函数的零点.(2)函数零点与方程根的关系方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y =f (x)有零点.(3)零点存在性定理如果函数y=f(x)在区间[a,b]上的图象不间断,并且在它的两个端点处的函数值异号,即f(a)f(b)<0,则这个函数在这个区间上,至少有一个零点,即存在一点x0∈(a,b),使f(x0)=0.2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0)(x1,0)无交点零点个数2103.指数、对数、幂函数模型性质比较函数性质y=a x(a>1)y=log a x(a>1)y=x n(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同4.几种常见的函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a、b为常数,a≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)与指数函数相关模型f(x)=ba x+c(a,b,c为常数,a>0且a≠1,b≠0) 与对数函数相关模型f(x)=b log a x+c(a,b,c为常数,a>0且a≠1,b≠0) 与幂函数f(x)=ax n+b(a,b,n为常数,a≠0)相关模型函数及其性质【例1-1】(2020·四川省冕宁中学校高三三模(文))已知函数()33f x x x =+,若()2f a -=,则()f a 的值为( ) A .2 B .2- C .1 D .1-【答案】B【解析】函数()33f x x x =+的定义域为R ,()()()()3333f x x x x x f x -=-+⨯-=--=-,函数()y f x =为奇函数,则()()2f a f a =--=-.【例1-2】(2019·河南安阳·高三一模(理))已知函数()sin ,0,621,0.x x x f x x ππ⎧⎛⎫+≤⎪ ⎪=⎝⎭⎨⎪+>⎩则()()21f f -+=( )A .632+ B .632- C .72D .52【答案】C 【解析】解:1(2)sin(2)sin 662f πππ-=-+==,f (1)1213=+=,∴17(2)(1)322f f -+=+=,故选:C .【例1-3】(2019·山东烟台·高三一模(理))已知函数()y f x =的定义域为R ,(1)f x +为偶函数,且对121x x ∀<≤,满足()()21210f x f x x x -<-.若(3)1f =,则不等式()2log 1f x <的解集为A .1,82⎛⎫ ⎪⎝⎭B .(1,8)C .10,(8,)2⎛⎫⋃+∞ ⎪⎝⎭D .(,1)(8,)-∞⋃+∞【答案】A【解析】因为对121x x ∀<≤,满足()()21210f x f x x x -<-,所以()y f x =当1x ≤时,是单调递减函数,又因为(1)f x +为偶函数,所以()y f x =关于1x =对称,所以函数()y f x =当1x >时,是增函数,又因为(3)1f =,所以有()11f -=,当2log 1x ≤时,即当02x <≤时,()()222log 1log (11log 2221)1f x f x x x x f <⇒<-⇒>-⇒>∴<≤当2log 1x >时,即当2x >时,()()222log 1log (3)log 3828x x f x f x f x <⇒<⇒∴<<⇒<<,综上所述:不等式()2log 1f x <的解集为1,82⎛⎫ ⎪⎝⎭,故本题选A.【例1-4】(2019·全国高三一模(文))已知函数()f x 为R 上的偶函数,当0x ≥时,()f x 单调递减,若(2)(1)f a f a >-,则a 的取值范围是( )A .1,3⎛⎫-∞ ⎪⎝⎭B .1,13⎛⎫- ⎪⎝⎭C .11,3⎛⎫- ⎪⎝⎭D .1,3⎛⎫-+∞ ⎪⎝⎭【答案】C【解析】结合题意,()f x 为偶函数,则该函数关于y 轴对称,当0x ≥时,()f x 单调递减,根据大致绘制函数图像,要满足()()21f a f a >-,则要求121a a a -+<<-,解得11,3a ⎛⎫∈- ⎪⎝⎭,故选C.【例1-5】(2020·江西东湖·南昌二中高三一模(理))已知函数()()2,2 11,2 2xa x xf xx⎧-≥⎪=⎨⎛⎫-<⎪ ⎪⎝⎭⎩,满足对任意的实数12x x≠,都有()()1212f x f xx x-<-成立,则实数a的取值范围为()A.()1,+∞B.13,8⎛⎤-∞⎥⎝⎦C.13,8⎛⎫-∞⎪⎝⎭D.13,8⎛⎫+∞⎪⎝⎭【答案】B【解析】由题意知函数()y f x=是R上的减函数,于是有()22012212aa-<⎧⎪⎨⎛⎫-≤-⎪⎪⎝⎭⎩,解得138a≤,因此,实数a的取值范围是13,8⎛⎤-∞⎥⎝⎦.1.函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质和图象的基础.因此,我们一定要树立函数定义域优先意识.2.函数解析式的几种常用求法:待定系数法、换元法、配凑法、构造解方程组法.3.利用定义证明或判断函数单调性的步骤:(1)取值;(2)作差;(3)定号;(4)判断.4.确定函数单调性有四种常用方法:定义法、导数法、复合函数法、图象法,也可利用单调函数的和差确定单调性.5.求函数最值的常用求法:单调性法、图象法、换元法、利用均值不等式.6.判断函数的奇偶性,首先应该判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件.7.利用函数奇偶性可以解决以下问题:(1)求函数值;(2)求解析式;(3)求函数解析式中参数的值;(4)画函数图象,确定函数单调性.8.在解决具体问题时,要注意结论“若T是函数的周期,则kT(k∈Z且k≠0)也是函数的周期”的应用.一次函数与二次函数【例2-1】(2020·浙江高一单元测试)设函数2()2(4)2f x x a x =+-+在区间(,3]-∞上是减函数,则实数a 的取值范围是( ) A .7a ≥- B .7a ≥C .3a ≥D .7a ≤-【答案】B【解析】函数()f x 的对称轴为4x a =-, 又函数在(,3]-∞上为减函数,43a ∴-,即7a .【例2-2】已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( ) A .[0,+∞) B .(-∞,0] C .[0,4] D .(-∞,0]∪[4,+∞)【答案】C【解析】由f (2+x )=f (2-x )可知,函数f (x )图象的对称轴为x =2,又函数f (x )在[0,2]上单调递增,所以函数f (x )在[2,4]上单调递减,且f (4)=f (0),由f (a )≥f (0)可得0≤a ≤4,故选C.【例2-3】(2019·重庆一中高三月考(理))实数x ,y 满足等式lg(lg )lg()lg(2)y x x =+-,则y 的取值范围是( ) A .(1,10] B .1,1010⎡⎤⎢⎥⎣⎦C .(0,10]D .(1,)+∞【答案】A【解析】由lg(lg )lg()lg(2)y x x =+-得()()2020lg lg lg 2x x y x x ⎧>⎪⎪->⎨⎪=-⎪⎩即2lg 2y x x =-,02x <<所以()(]2lg 110,1y x =--+∈ 所以(]1,10y ∈.【例2-4】(2020·大名中学高二月考)已知函数()2f x ax bx c =++,若关于x 的不等式()0f x >的解集为()1,3-,则A .()()()401f f f >>B .()()()104f f f >>C .()()()014f f f >>D .()()()140f f f >>【答案】B【解析】关于x 的不等式()0f x >的解集为(1,3)-, 可得0a <,且1-,3为方程20ax bx c ++=的两根, 可得13ba -+=-,13c a-⨯=,即2b a =-,3c a =-, 2()23f x ax ax a =--,0a <,可得(0)3f a =-,f (1)4a =-,f (4)5a =, 可得f (4)(0)f f <<(1),故选B .【例2-5】(2019·浙江高三期中)已知函数()()2lg 1f x x x =-+,若函数()f x 在开区间()(),1R t t t +∈上恒有最小值,则实数t 的取值范围为( ) A .3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭B .31,22⎛⎫-⎪⎝⎭ C .11,22⎛⎫-⎪⎝⎭ D .31,22⎡⎤-⎢⎥⎣⎦ 【答案】A【解析】对于内层函数2213124u x x x ⎛⎫=-+=-+ ⎪⎝⎭,所以,当12x =时,即当12x =±时,内层函数21u x x =-+取得最小值,此时,函数()y f x =取得最小值.由题意可知()1,12t t -∈+或()1,12t t ∈+,即12112t t ⎧<-⎪⎪⎨⎪+>-⎪⎩或12112t t ⎧<⎪⎪⎨⎪+>⎪⎩,解得3122t -<<-或1122t -<<. 因此,实数t 的取值范围是3111,,2222⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭.1.幂函数y =x α(α∈R )图象的特征α>0时,图象过原点和(1,1)点,在第一象限的部分“上升”;α<0时,图象不过原点,经过(1,1)点在第一象限的部分“下降”,反之也成立.2.求二次函数的解析式就是确定函数式f (x )=ax 2+bx +c (a ≠0)中a ,b ,c 的值.应根据题设条件选用适当的表达形式,用待定系数法确定相应字母的值.3.二次函数与一元二次不等式密切相关,借助二次函数的图象和性质,可直观地解决与不等式有关的问题.4.二次函数的单调性与对称轴紧密相连,二次函数的最值问题要根据其图象以及所给区间与对称轴的关系确定.指对幂函数【例3-1】(2019·江西临川·高三月考(文))若a =12⎛⎫ ⎪⎝⎭23,b =15⎛⎫ ⎪⎝⎭23,c =12⎛⎫ ⎪⎝⎭13,则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <b C .b <c <a D .b <a <c【答案】D【解析】∵y =x 23 (x >0)是增函数,∴a =12⎛⎫⎪⎝⎭23>b =15⎛⎫ ⎪⎝⎭23. ∵y =12⎛⎫⎪⎝⎭x 是减函数,∴a =12⎛⎫ ⎪⎝⎭23<c =12⎛⎫ ⎪⎝⎭13,∴b <a <c .【例3-2】(2019·全国高三专题练习)已知函数2log ,1,()(2),01,x x f x f x x ⎧=⎨<<⎩则2f ⎛⎫ ⎪ ⎪⎝⎭的值是( ) A .0 B .1C .12D .-12【答案】C【解析】∵2log ,1(),01(2),01x x f x f x x ⎧⎪=<<⎨<<⎪⎩.∴21log 22f f ⎛=== ⎝⎭,故选C. 【例3-3】(2020·江西东湖·南昌二中高二期末(理))已知函数()f x 是定义在R 上的奇函数,且当0x ≥时,()()2f 21x log x =+-,则()6f -=( )A .2B .4C .-2D .-4【答案】C【解析】由题意可得()()26log 6212f =+-=,由于函数()y f x =是定义在R 上的奇函数,所以,()()662f f -=-=-,故选C.【例3-4】(2020·四川省冕宁中学校高三三模(文))若非零实数a 、b 满足23a b =,则下列式子一定正确的是( ) A .b a > B .b a < C .b a < D .b a >【答案】C【解析】令23abt ==,则0t >,1t ≠,2lg log lg 2t a t ∴==,3lg log lg 3tb t ==, |lg ||lg ||lg |(lg3lg 2)||||0lg 2lg3lg 2lg3t t t a b -∴-=-=>⋅,因此,||||a b >.【例3-5】(2020·辽宁高三三模(文))设()f x 为定义在R 上的奇函数,当0x ≥时,23()log (1)1f x x ax a =++-+(a 为常数),则不等式(34)5f x +>-的解集为( )A .(,1)-∞-B .(1,)-+∞C .(,2)-∞-D .(2,)-+∞【答案】D【解析】因为()f x 是定义在R 上的奇函数,所以(0)0f =,解得1a =,所以,当0x ≥时,32()log (1)f x x x =++.当[0,)x ∈+∞时,函数3log (1)y x =+和2yx 在[0,)x ∈+∞上都是增函数,所以()f x 在[0,)x ∈+∞上单调递增,由奇函数的性质可知,()y f x =在R 上单调递增,因为(2)5(2)5f f =-=-,,故()(34)5(34)2f x f x f +>-⇔+>-,即有342x +>-,解得2x >-.1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较.3.指数函数的单调性取决于底数a 的大小,当底数a 与1的大小关系不确定时应分0<a <1和a >1两种情况分类讨论.4.对数值取正、负值的规律当a >1且b >1或0<a <1且0<b <1时,log a b >0; 当a >1且0<b <1或0<a <1且b >1时,log a b <0.5.利用单调性可解决比较大小、解不等式、求最值等问题,其基本方法是“同底法”,即把不同底的对数式化为同底的对数式,然后根据单调性来解决.6.比较幂、对数大小有两种常用方法:(1)数形结合;(2)找中间量结合函数单调性.7.多个对数函数图象比较底数大小的问题,可通过比较图象与直线y =1交点的横坐标进行判定.函数的综合应用【例4-1】(2020·全国高三(文))方程ln 40x x +-=的实根所在的区间为( ) A .(1,2) B .(2,3)C .(3,4)D .(4,5)【答案】B【解析】构造函数()ln 4f x x x =+-,则该函数在()0,∞+上单调递增,()130f =-<,()2ln 220f =-<,()3ln310f =->,由零点存在定理可知,方程ln 40x x +-=的实根所在区间为()2,3,故选B.【例4-2】(2020·湖南娄底·高三(文))函数()621x f x x =-+的零点0x 所在的区间为( ) A .()1,0- B .()0,1 C .()1,2D .()2,3【答案】C【解析】∵()f x 在区间()1,-+∞上是增函数,且()110f =-<,()220f =>, ∴()f x 的零点()01,2x ∈.【例4-3】(2020·全国高三一模(文))若定义在R 上的偶函数()f x 满足()()2f x f x +=,且在区间[]1,2上是减函数,()11f =,()01f =-现有下列结论,其中正确的是:( ) ①()f x 的图象关于直线1x =对称;②()f x 的图象关于点3,02⎛⎫⎪⎝⎭对称;③()f x 在区间[]3,4上是减函数;④()f x 在区间()4,4-内有8个零点. A .①③ B .②④ C .①③④ D .②③④【答案】C【解析】由()()2f x f x +=,得()()2f x f x -=-, 结合()f x 为偶函数,得()()2f x f x -=, 则曲线()y f x =关于直线1x =对称,则①正确; 无法推出()()3f x f x -=-,则②不一定正确;由曲线()()12y f x x =≤≤可得曲线()()01y f x x =≤≤, 即得曲线()()02y f x x =≤≤,恰好是在一个周期内的图象;再根据()f x 是以2为周期的函数,得到曲线()()24y f x x =≤≤,因为在()y f x =在[]1,2上是减函数,()y f x =在[]3,4上是减函数,则③正确; 因为()y f x =在[]1,2上是减函数,()110f =>,()210f =-<, 所以()y f x =在[]1,2上有唯一的一个零点, 根据对称性,()f x 在区间()4,4-内有8个零点.【例4-4】(2020·宁夏原州·固原一中高三其他(文))已知函数1,(0)()ln 2,(0)x xe x f x x x x ⎧+≤=⎨-->⎩,若函数()y f x a =-至多有2个零点,则a 的取值范围是( )A .1,1e ⎛⎫-∞- ⎪⎝⎭B .1,1(1,)e ⎛⎫-∞-+∞ ⎪⎝⎭C .11,1e ⎛⎫-- ⎪⎝⎭D .[1,1]e +【答案】B【解析】解析:由()0f x a -=,得()f x a =,1x y xe =+ 0x ≤()1x y x e '=+,当1x =-时,0y '=,当(),1x ∈-∞-时,0y '<,函数单调递减, 当()1,0x ∈-时,0y '> ,函数单调递增, 所以0x ≤时,函数的最小值()111f e-=-,且()01f = ln 2y x x =-- ,0x >,11y x'=-,当1x =时,0y '=, 当()0,1x ∈时,0y '<,函数单调递减, 当()1,x ∈+∞时,0y '>,函数单调递增, 所以0x >时,函数的最小值()11f =-,作出函数()y f x =与y a =的图象,观察他们的交点情况,可知,11a e<-或1a >时,至多有两个交点满足题意,故选:B.【例4-5】(2020·黑龙江道里·哈尔滨三中高三其他(文))定义:()(){}N f x g x ⊗表示()()f x g x >的解集中整数的个数.若()()2log 1f x x =--,()()232g x a x =--,且()(){}2N f x g x ⊗=,则实数a的取值范围是( ) A .[)22log 3,-+∞ B .()22log 3,2- C .(]22log 3,2- D .[)22log 3,2-【答案】D【解析】将2y log x =的图象向右平移一个单位得到()21y log x =-的图象,再将x 轴上方图象部分向下翻折对称,得到()()21f x log x =--的图象如图所示,注意到()()()()20,31323f f g f ==-=-<,, 结合函数()g x 的对称性可知,为使()()f x g x >的解集中整数的个数为2(整数解只能是2和3),必须且只需()20g <,且()()44g f ≥,即20a -<且223,a log a -≥-∴的取值范围是[)22log 3,2-.1.识图对于给定函数的图象,要从图象的左右、上下分布范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性、周期性,注意图象与函数解析式中参数的关系.2.用图借助函数图象,可以研究函数的定义域、值域、单调性、奇偶性、对称性等性质.利用函数的图象,还可以判断方程f(x)=g(x)的解的个数,求不等式的解集等.3.转化思想在函数零点问题中的应用方程解的个数问题可转化为两个函数图象交点的个数问题;已知方程有解求参数范围问题可转化为函数值域问题.4.判断函数零点个数的常用方法(1)通过解方程来判断.(2)根据零点存在性定理,结合函数性质来判断.(3)将函数y=f(x)-g(x)的零点个数转化为函数y=f(x)与y=g(x)图象公共点的个数来判断.5.解函数应用问题的步骤(1)审题:弄清题意,分清条件和结论,理顺数量关系,初步选择数学模型;(2)建模:将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识,建立相应的数学模型;(3)解模:求解数学模型,得出数学结论;(4)还原:将数学问题还原为实际问题.以上过程用框图表示如下:。
高考总复习2025第7节 对数函数课标解读1.通过具体实例,了解对数函数的概念.能画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.2.知道对数函数y=log a x与指数函数y=a x互为反函数(a>0,且a≠1).1 强基础 固本增分知识梳理1.对数函数的概念函数y=log a x(a>0,且a≠1)叫作对数函数,其中x是自变量,定义域是 (0,+∞) .微点拨对数函数解析式y=log a x的三个特征:(1)底数a>0,且a≠1;(2)真数是自变量x且x>0;(3)系数为1.2.对数函数的图象与性质函数y =log a x (a >0,且a ≠1)图象a >10<a <1图象特征在y 轴右侧,过定点(1,0) 这是因为log a 1=0 当x 逐渐增大时,图象是上升的当x 逐渐增大时,图象是下降的函数y =log a x (a >0,且a ≠1)性质定义域(0,+∞)值域R 单调性在(0,+∞)上单调递增在(0,+∞)上单调递减函数值变化规律过定点(1,0),即x=1时,y=0当x>1时,y>0;当0<x<1时,y<0当x>1时,y<0;当0<x<1时,y>0微点拨1.对数值的符号规律:log a x>0⇔(a-1)(x-1)>0,log a x<0⇔(a-1)(x-1)<0 (其中a>0,a≠1,x>0).2.在直线x=1的右侧,当a>1时,底数越大,图象越靠近x轴;当0<a<1时,底数越小,图象越靠近x轴.也就是说,在第一象限内,不同底数的对数函数的图象从左到右底数逐渐增大.微拓展函数y =log a|x|与y =|log a x |(a >0,a ≠1)的性质函数y =log a |x |y =|log a x |a >10<a <1a >10<a <1定义域(-∞,0)∪(0,+∞)(0,+∞)值域R [0,+∞)奇偶性偶函数非奇非偶函数单调性在区间(0,+∞)上单调递增;在区间(-∞,0)上单调递减在区间(-∞,0)上单调递增;在区间(0,+∞)上单调递减在区间(0,1)上单调递减;在区间(1,+∞)上单调递增图象微思考如何确定对数型函数y=klog a(m x+n)+b(a>0,且a≠1,m≠0)图象所过的定点?3.反函数一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为 ,它们的定义域与值域正好互换.反函数微点拨1.只有在定义域上单调的函数才存在反函数.2.互为反函数的两个函数的图象关于直线y=x对称.常用结论2.对于函数f(x)=|log a x|(a>0,且a≠1),若f(m)=f(n)(m≠n),则必有m n=1.3.函数y=log a x(a>0,且a≠1)的图象与(a>0,且a≠1)的图象关于x轴对称,函数y=log a x(a>0,且a≠1)的图象与y=log a(-x)(a>0,且a≠1)的图象关于y轴对称.自主诊断题组一思考辨析(判断下列结论是否正确,正确的画“√”,错误的画“×”)1.函数f (x )=log 3(x -1)是对数函数.( )2.若log a x >1,则x >a.( )3.函数f (x )=log a (a x -1)(a >0,且a ≠1)在其定义域上单调递增.( )4.函数y =| |的单调递减区间是(1,+∞).( )× × √ ×题组二回源教材5.(湘教版必修第一册习题4.3第10题改编)函数y= 的定义域为 .6.(湘教版必修第一册习题4.3第11题改编)已知a=log36,b=log510,c=log714,D则a,b,c的大小关系是( )A.b<c<aB.b<a<cC.c<a<bD.c<b<a解析a=log36=1+log32,b=log510=1+log52,c=log714=1+log72,因为log32>log52>log72,所以a>b>c.题组三连线高考7.(2021·新高考Ⅱ,7)已知a=log52,b=log83,c= ,则下列判断正确的是( )C A.c<b<a B.b<a<cC.a<c<bD.a<b <cB 解析(方法一)∵函数f(x)为偶函数,∴f(-x)=f(x).不妨令x=1,则有f(-1)=f(1),2 研考点 精准突破考点一考点二考点三考点一 对数函数的图象及其应用例1(1)(2024·浙江嘉兴模拟)若函数f (x )=log 2|a +x |的图象不经过第四象限,则实数a 的取值范围为 . [1,+∞) 解析 函数f (x )=log 2|a+x|的图象关于直线x=-a 对称,其定义域为{x|x ≠-a },作出函数f (x )=log 2|a+x|的大致图象(如图所示),由图象可知,要使函数f (x )=log 2|a+x|的图象不经过第四象限,则 解得a ≥1,所以实数a 的取值范围为[1,+∞).(1,3) (2)(2024·北京海淀模拟)不等式2log3x-(x-1)(x-2)>0的解集为 .[对点训练1](1)(2024·浙江杭州模拟)函数f(x)=log n(x+m)恒过定点(-2,0),则m 的值为( )CA.5B.4C.3D.2解析由函数f(x)=log n(x+m)恒过定点(-2,0),可得log n(-2+m)=0,所以-2+m=1,解得m=3,故选C.C(2)函数f(x)=x l n(x2+1)的图象大致为( )解析由题可知,函数f(x)的定义域为R,又f(-x)=-x ln[(-x)2+1]=-x ln(x2+1) =-f(x),故函数f(x)为奇函数,排除A,B,又f(1)=ln 2>0,因此排除D,故选C.考点二 对数函数的单调性及其应用(多考向探究预测)考向1求单调区间或参数取值范围例2(1)(2024·河北唐山模拟)函数f(x)=lg(x+1)+lg(3-x)的单调递增区间是 . (-1,1)解析由得-1<x<3,则函数f(x)的定义域为(-1,3),又f(x)=lg(x+1)+lg(3-x)=lg(x+1)(3-x)=lg(-x2+2x+3),令u=-x2+2x+3,则u(x)在区间(-1,1)上单调递增,在区间(1,3)上单调递减,又因为y=lg u在定义域上是增函数,所以f(x)的单调递增区间是(-1,1).变式探究1lg 4 (变结论)本例(1)中,若函数解析式不变,则函数f(x)的最大值为 . 解析由于f(x)的定义域为(-1,3),又f(x)=lg(-x2+2x+3),令u=-x2+2x+3,易知,u 有最大值4,因此函数f(x)的最大值为lg 4.变式探究2(变条件)本例(2)中,若函数解析式不变,则当函数的值域(-∞,-4]∪[0,+∞) 为R时,实数a的取值范围是 .解析当函数的值域为R时,u(x)=x2-ax-a应能取到所有正实数,所以Δ=a2+4a≥0,解得a≥0或a≤-4,故实数a的取值范围是(-∞,-4]∪[0,+∞).[对点训练2]若函数在(-2,+∞)单调递减,则实数a的取值范围是 (-∞,-6] .考向2比较对数值大小例3(1)(2024·湖南益阳模拟)已知 ,则a,b,c的大小关B系正确的是( )A.c>b>aB.c>a >bC.b >a>cD.a>c>b(2)设a=log26,b=log312,c=log515,则( )BA.a<b<cB.c<b<aC.b<a<cD.c<a<b解析a=log26=1+log23,b=log312=1+log34,c=log515=1+log53.因为log23>log22=1,log34>log33=1,0<log53<log55=1,所以a>c,b>c.又因为2log23=log29>log28=3,2log34=log316<log327=3,所以2log23>2log34,即log23>log34,a>b.所以a>b>c.规律方法比较对数值大小的方法若底数为同一常数可由对数函数的单调性直接进行判断;若底数为同一字母,则需对底数进行分类讨论若底数不同,真数相同可以先用换底公式化为同底后,再进行比较若底数与真数都不同常借助1,0等中间量进行比较考向3解对数型不等式例4(1)(2024·广东河源模拟)定义在R上的偶函数f(x)在区间(-∞,0)上单调递D(2,+∞)规律方法求解对数不等式的两种类型及方法类型方法log a x>log a b借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论log a x>b需先将b化为以a为底的对数式的形式,再借助y=log a x的单调性求解考点三 与对数函数有关的综合问题例5(多选题)(2024·安徽蚌埠模拟)已知函数 ,则下列说法BD中正确的是( )A.函数f(x)的图象关于原点对称B.函数f(x)的图象关于y轴对称C.函数f(x)在区间[0,+∞)上单调递减D.函数f(x)的值域为[ ,+∞)[对点训练3]已知函数f(x)=l n|x-1|-l n|x+1|,若存在两个不同的实数x1,x2,使Bf(x1)=f(x2),则有( )A.x1x2=-1B.x1x2=1C.x1+x2<-2D.x1+x2>2递减,且y>1.所以当x∈(-∞,-1)时,函数f(x)单调递增,且f(x)>0;当x∈(-1,0)时,函数f(x)单调递减,且f(x)>0.作函数f(x)的图象知,由f(x1)=f(x2),则。
第13讲:对数函数
一、课程标准
1、通过具体实例,直观了解对数函数模型所刻画的数量关系,理解对数函数的概念。
2、体会对数函数是一类重要的函数模型;能借助计算器或计算机画出具体对数函数的图象。
3、探索并了解对数函数的单调性与特殊点。
4、知道指数函数y=a x与对数函数y=log a x互为反函数(a>0,a≠1)。
二、基础知识回顾
1、对数函数y=log a x(a>0,且a≠1)的图象与性质
2、反函数
指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数,它们的图象关于直线y=x对称.对数函数的图象与底数大小的比较
3、如图,作直线y=1,则该直线与四个函数图象交点的横坐标为相应的底数.
故0<c<d<1<a<b.
由此我们可得到以下规律:在第一象限内从左到右底数逐渐增大.
三、自主热身、归纳总结
1、函数f(x)=log 2(-x 2+22)的值域为(B ) A . ⎝⎛⎭⎫-∞,32 B . ⎝⎛
⎦⎤-∞,32
C . ⎝⎛⎭⎫32,+∞
D . ⎣⎡⎭⎫32,+∞
2、若log a 2<log b 2<0,则下列结论正确的是(B ) A . 0<a <b <1 B . 0<b <a <1 C . a >b >1 D . b >a >1
3、函数2
2()log (34)f x x x =--的单调减区间为( )
A .(,1)-∞-
B .3(,)2
-∞-
C .3(,)2
+∞
D .(4,)+∞
4、(2019秋•菏泽期末)已知函数()log (1)a f x x =+,()log (1)(0a g x x a =->,1)a ≠,则( ) A .函数()()f x g x +的定义域为(1,1)-
B .函数()()f x g x +的图象关于y 轴对称
C .函数()()f x g x +在定义域上有最小值0
D .函数()()f x g x -在区间(0,1)上是减函数
5、(2018苏州期末)已知4a =2,log a x =2a ,则正实数x 的值为________.
6、(2018盐城三模).函数()ln(1f x =的定义域为 ▲ .
四、例题选讲
考点一对数函数的性质及其应用 例1、(1)函数的定义域为( )
A .
B .
C .
D .
(2)已知a =log 2e ,b =ln 2,c =log 121
3,则a ,b ,c 的大小关系为( )
A .a >b >c
B .b >a >c
C .c >b >a
D .c >a >b
(3)设函数f (x )=⎩⎪⎨⎪⎧log 2
x ,x >0,log 12(-x ),x <0.若f (a )>f (-a ),则实数a 的取值范围是( )
A .(-1,0)∪(0,1)
B .(-∞,-1)∪(1,+∞)
C .(-1,0)∪(1,+∞)
D .(-∞,-1)∪(0,1)
变式1、(1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为 ;
(2)已知函数f (x )=⎩⎪⎨⎪
⎧3x +1
,x ≤0,log 13
x ,x >0,则不等式f (x )>1的解集为 ;
(3)若函数f (x )=2(3)log a -(ax +4)在[-1,1]上是单调增函数,则实数a 的取值范围是 . 变式2、已知是偶函数,则( )
A .
B .
C .
D .
方法总结:对数函数的性质有着十分广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.
(1)对数值大小比较的主要方法:①化为同底数后利用函数的单调性;②化为同真数后利用图像比较;③借用中间量(0或1等)进行估值比较.
(2)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a 的取值范围,并在必要时须分底数0<a <1和a >1两种情形进行分类讨论,防止错解.
考点二 对数函数的图像及其应用
例2(1) [2019·潍坊一模]若函数f(x)=a x -a -x (a>0且a≠1)在R 上为减函数,则函数y =log a (|x |-1)的图像可以是(D )
A B C D
(2)已知f(x)=|lg x|,若1
c >a>b>1,则f(a),f(b),f(c)的大小关系是 . 变式1、(1)函数y =ln(2-|x |)的大致图象为( )
(2)当0<x ≤1
2时,4x <log a x ,则a 的取值范围是( ) A.⎝⎛
⎭⎫0,22 B.⎝⎛⎭⎫22,1
C .(1,2)
D .(2,2)
变式2、关于函数()||2||f x ln x =-下列描述正确的有( ) A .函数()f x 在区间(1,2)上单调递增
B .函数()y f x =的图象关于直线2x =对称
C .若12x x ≠,但12()()f x f x =,则124x x +=
D .函数()f x 有且仅有两个零点
方法总结: (1)对一些可通过平移、对称变换作出其图像的对数型函数,在求解其单调性(单调区间)、值域(最值)、零点时,常利用数形结合思想求解.
(2)一些对数型方程、不等式问题常转化为相应的函数图像问题,利用数形结合法求解.
考点三 对数函数的综合及应用 例3、已知函数f (x )=log 4(ax 2+2x +3).
(1)若f (1)=1,求f (x )的单调区间;
(2)是否存在实数a ,使f (x )的最小值为0?若存在,求出a 的值;若不存在,说明理由.
变式1、 在函数f(x)=
12
log (x 2-2ax +3)中.
(1)若其在[-1,+∞)内有意义,求实数a 的取值范围; (2)若其在(-∞,1]内为增函数,求实数a 的取值范围.
变式2、已知f(x)=lg 1-mx
x -1是奇函数. (1)求m 的值及函数f(x)的定义域;
(2)根据(1)的结果判断f(x)在(1,+∞)上的单调性,并证明.
方法总结:高考对对数函数的考查多以对数与对数函数为载体,考查对数的运算和对数函数的图像和性质的应用,且常与二次函数、方程、不等式等内容交汇命题.解决此类问题的关键是根据已知条件,将问题转化为(或构造)对数函数或对数型函数,再利用图像或性质求解.
五、优化提升与真题演练
1、已知()lg(10)lg(10)f x x x =++-,则()f x 是( ) A .偶函数,且在(0,10)是增函数
B .奇函数,且在(0,10)是增函数
C.偶函数,且在(0,10)是减函数D.奇函数,且在(0,10)是减函数
2、已知函数(其中)的图象如图所示,则函数的图象大致是( )
A.B.
C.D.
3、【2019年浙江06】在同一直角坐标系中,函数y,y=1og a(x)(a>0且a≠1)的图象可能是()A.B.
C.D.
4、(多选)已知函数f(x)=ln(x-2)+ln(6-x),则()
A.f(x)在(2,6)上单调递增
B.f(x)在(2,6)上的最大值为2ln 2
C.f(x)在(2,6)上单调递减
D.y=f(x)的图象关于直线x=4对称
5、(多选)在同一坐标系中,f(x)=kx+b与g(x)=log b x的图象如图,则下列关系不正确的是()
A .k <0,0<b <1
B .k >0,b >1
C .f ⎝⎛⎭⎫
1x g (1)>0(x >0)
D .x >1时,f (x )-g (x )>0
6、(2019·浙江高考)在同一直角坐标系中,函数 y =1a x ,y =log a ⎝⎛
⎭⎫x +12(a >0,且a ≠1)的图象可能是( )
7、【2018年江苏05】函数f (x )的定义域为 .
8、函数()211log 1ax
f x x x
+=
+-为奇函数,则实数a =__________. 9、已知函数f (x )=log a (3-ax )(a >0,且a ≠1).
(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;
(2)是否存在这样的实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.。