抗沉性
- 格式:ppt
- 大小:4.59 MB
- 文档页数:16
船舶六大航行性能和船舶结构性能对船舶安全的影响为了确保船舶在各种条件下的安全和正常航行,要求船舶具有良好的航行性能,这些航行性能包括浮力、稳性、抗沉性、快速性、摇摆性和操作性。
(一)浮性船舶在一定装载情况下的漂浮能力叫做船舶浮性。
船舶是浮体,决定船舶沉浮的力主要是重力和浮力。
其漂浮条件是:重力和浮力大小相等方向相反,而且两力应作用在同一铅垂线上。
船舶的平衡漂浮状态,简称船舶浮态。
船舶浮态可分为四种。
1、正浮状态是指船舶首、尾、中的左右吃水都相等的情况。
2、纵倾状态是指左右吃水相等而首尾吃水不等的情况。
船首吃水大于船尾吃水叫首倾;船尾吃水大于船首吃水叫尾顷。
为保持螺旋桨一定的水深,提高螺旋桨效率,一般未满载的船舶都应有一定的尾顷。
3、横倾状态是指船首尾吃水相等而左右吃水不等的情况,航行中不允许出现横倾状态。
4、任意状态是指既有横倾又有纵倾的状态。
(二)稳性稳性是指船舶在外力矩(如风、浪等)的作用下发生倾斜,当外力矩消除后能自行恢复到原来平衡位置的能力。
船舶稳性,按倾斜方向可分为横稳性和纵稳性;按倾斜角度大小可分为初稳性(倾角100以下)和大倾角稳性;按外力矩性质可分为静稳性和动稳性。
对于船舶来说,发生首尾方向倾覆的可能性极小,所以一般都着重讨论横稳性。
(三)抗沉性抗沉性是指船舶在一个舱或几个舱进水的情况下,仍能保持不致于沉没和倾覆的能力。
为了保证抗沉性,船舶除了具备足够的储备浮力外,一般有效的措施是设置双层底和一定数量的水密舱壁。
一旦发生碰撞或搁浅等致使某一舱进水而失去其浮力时,水密舱壁可将进水尽量限制在较小的范围内,阻止进水向其他舱室漫延,而不致使浮力损失过多。
这样,就能以储备浮力来补偿进水所失去的浮力,保证了船舶的不沉,也为堵漏施救创造了有利条件。
(四)快速性船舶在主机输出功率一定的条件下,尽量提高船速的能力叫船舶快速性。
快速性包含节能和速度两层意义,所以提高船舶快速性也应从这两方面入手,即尽量提高推进器的推力和减小船舶航行的阻力。
1:舱顶在水线以下且封闭的。
进水后舱室充满水,进水量不变,无自由液面。
此类侵水对船舶的稳性和浮态影响较小,可作为装载固体质量来处理。
2:舱顶在水线以上,舱内和舱外水不相同,有自由液面,作为增加液体重量来考虑,并考虑自由液面。
3:舱顶在水线以上,破口在舷侧水线附近或以下,进水后舱内和舱外水想通,水面保持一致。
实质是损失了一部分浮力,用逐步逼近增重法来计算进水后的浮态和稳态。
:4:浮态:船体破损侵水后的最终平衡水线沿船舷距甲板上边缘至少要有76mm的干舷高度。
稳性;对称浸水,当采用固定排水量法计算时,最终平衡状态的剩余稳性高度GM》50mm,不对称时可允许横倾角大于7.
5:舱壁甲板:横向水密舱板所能够达到的最高一层的甲板。
限界线;舱壁甲板上表面以下76mm的线。
分舱载重线:决定分舱长度时的载重线。
可浸长度:沿着船长方向以某一点c为中心的舱,在规定的分舱载重线和渗透率的情况下,以C点所做的舱的长度。
许可舱长:考虑到船长和船舶业务性质对抗沉性要求时所允许的实际舱长,称为许可舱长。
渗透率:舱室实际进水量与理论进水量之比。
6:有区别,因为钢材和面粉的渗透率不同。
7:一:实际装载的渗透率的u值大于规定值二是:船舶破舱浸水钱的载重水线低于规定的分舱载重线。
抗沉性定义船体水下部分发生破损,船舱淹水后仍能浮而不沉和不倾覆的能力。
概述规范对船长在50m及以上的客船和科学考察船、100m以上的货船和50m以上的渔船或拖船均有详细的规定和要求。
中国宋代造船时就首先发明了用水密隔舱来保证船舶的抗沉性,军舰的抗沉性尤为重要。
《国际海上人命安全公约》对船舶抗沉性作了规定,适用于载客超过12人的船舶(客船).公约对客船抗沉性的要求有两种体系,可任选一种进行核算.一种体系为:全船任一舱,相邻两舱或三舱淹水后,船仍能保持不超过所限制的浮态并具有不小于0.05米的初稳心高,称为一舱制,二舱制或三舱制.舱制依船的大小和载客人数通过计算来确定.另一体系为:在限定的允许破舱后的浮态和稳性的条件下,计入各部位的船舱的受损概率,计算出的船舶破舱后的生存力指数(概率)应达到规定值,这一指数依船的大小和载客人数而定.船舶主体部分的水密分舱的合理性,分舱甲板(水密舱壁所达到的那层甲板)的干舷值和完整船舶稳性的好坏等,是影响抗沉性的主要因素。
吃水对大角稳性及抗沉性影响吃水对大角稳性及抗沉性影响:在型深D不变情况下,增加吃水降低了干舷,使储备浮力减少,大角横倾时,甲板边缘提前入水,对抗沉性及大角稳性都是不利的。
吃水深的船航行时不易产生砰击和漂移,吃水浅的船在海上航行时耐波性较差。
船长对抗沉性的影响增加船长对改善抗沉性有利,包括可浸长度增加和海损时稳性损失相对下降。
型深对抗沉性影响吃水d一定时,型深D大,则干舷F大,船舶储备浮力大。
当船舱破损淹水时,型深D大的船经下沉后,还可保留一定量的干舷(剩余干舷),而且具有足够的生存力和安全性。
对有抗沉性要求的船舶,按该规则计算出要求的许可舱长不能满足总布置的需要,而需将许可舱长加长时,就需加大型深。
型深是提高抗沉性极为重要的因素。
第五章抗沉性第一节进水舱分类与渗透率船舶抗沉性又称船舶不沉性,是指船舶在一个舱或几个舱进水的情况下,仍能保持不至于沉没和倾覆的能力。
为了保证抗沉性,船舶除了具备足够的储备浮力外,一般有效的措施是设置双层底和一定数量的水密舱壁。
一旦发生碰撞或搁浅等致使某一舱进水而失去其浮力时,水密舱壁可将进水尽量限制在较小的范围内,阻止进水向其他舱室漫延,而不致使浮力损失过多。
这样,就能以储备浮力来补偿进水所失去的浮力,保证了船舶的不沉,也为堵漏施救创造了有利条件。
对于不同用途、不同大小和不同航区的船舶,抗沉性的要求不同。
它分“一舱制”船、“二舱制”船、“三舱制”船等。
“一舱制”船是指该船上任何一舱破损进水而不致造成沉没的船舶。
一般远洋货船属于“一舱制”船。
“二舱制”船是指该船任何相邻的两个舱破损进水而不致造成沉没的船舶。
“三舱制”船是三舱破损进水而不致造成沉没的船舶。
一般化学品船和液体散装船属于“二舱制”船或“三舱制”船。
对“一舱制”船也不是在任何装载情况下一舱进水都不会沉没,因为按抗沉性原理设计舱室时是按照舱室在平均渗透率下的进水量来计算的。
所谓渗透率是指某舱的进水容积与该舱的舱空的比值。
所以满载钢材的杂货船,货舱进水时其进水量就会较大地超过储备浮力,就不一定保证船舶不沉。
船舶在破损进水后是否会倾覆或沉没,在一定程度上还与船上人员采取的抗沉性措施是否得当有关。
船舶破损进水后的措施有很多,如抽水、灌水、堵漏、加固、抛弃船上载荷、移动载荷或调驳压载水等。
这些措施都是为了保证船舶浮力,有时为了减少船舶倾斜、改善船舶浮态和稳性,常常通过采用灌水或调驳到相应的舱室的办法来达到现代舰船几乎都设有双层底和水密横舱壁,而将整个船体分成几个单独的水密舱室,并在水线以上留有足够的干舷高度,以保持一定的储备浮力。
这样,当某些部分受损进水后,仍可保持一定的浮态和稳性。
第四节《破损控制手册》简介为保证船舶安全,履行SOLAS 公约的要求,本轮编制了《破损控制手册》。