图像形态学
- 格式:ppt
- 大小:4.71 MB
- 文档页数:84
图像处理中的形态学操作图像处理是计算机科学中的重要研究领域,形态学操作在图像处理中起着至关重要的作用。
形态学学并不是一种新的技术,而是一种对原始图像进行改进和增强的方法。
本文将从何为形态学操作开始,探讨形态学操作在图像处理中的应用,包括膨胀、腐蚀、开操作、闭操作与击中与击不中变换。
一、何为形态学操作形态学操作是一种运用于二值和灰度图像的图像处理技术,该技术主要用于改变二值形状的结构。
形态学操作的基础分为两类–膨胀和腐蚀。
膨胀可以对图像中的物体进行扩张和膨胀,使其相互靠近或合并成一个整体。
腐蚀则是对图像中的物体进行缩小和收缩,使其失去一些细节,变得更加简洁。
除此之外,还有开操作、闭操作、击中变换和击不中变换。
这些操作可以大大改善图像的质量,使其更能满足特定要求。
二、膨胀与腐蚀形态学操作中最为基础的操作就是膨胀和腐蚀,两者可以应用于二值图像和灰度图像。
在二值图像中,通过膨胀和腐蚀操作可以改变物体的形状和大小,或将两个物体结合成一个整体。
在灰度图像中更是如此,膨胀和腐蚀操作可以使图像细节失去一些,或远离一些不想要的噪声。
膨胀操作可简单理解为将物体旁边的像素点扩张出去,从而扩大物体的范围。
在处理图像时,这种扩张往往是指使用固定的形状结构元素,在物体的四周扩展数个像素点。
而腐蚀则相反,它能使物体缩小,并使像素点向物体内部收缩。
两者结合起来会给图像带来优秀的效果。
三、开操作和闭操作开操作和闭操作是另外两种典型形态学操作,它们可以通过膨胀和腐蚀来改变物体的形状。
它们应用于灰度图像时,改变的是灰度级值的大小。
开操作通过一次腐蚀操作后再进行一次膨胀操作来实现,闭操作相反,它是通过一次膨胀操作后再进行一次腐蚀操作。
开操作和闭操作可以有效地去除掉噪声点,使图像变得更加光滑。
因此,在图像处理过程中使用这两个操作非常常见。
四、击中变换与击不中变换击中变换和击不中变换也是形态学操作中的两种特殊情况。
击中变换是在二值图像中对目标进行检测,根据设定的模板找到目标的精确位置。
摘要伴随着电子计算机技术的进步,通信技术日新月异的更新与发展,图像处理技术近年来得到突飞猛进的发展,并成功的应用到几乎所有与成像有关的领域,并发挥着相当重要的作用。
它利用计算机对数字图像进行一系列的操作,从而获得某种预期的结果,对图像进行处理时,经常运用图像处理技术以改善图像的质量。
现在图像处理仍然在不断的发展,延伸出更多的应用领域,相信数字图像处理技术的逐步发展定会让我们的信息生活变得更好。
在图像处理中,数学形态学的理论基础在数字图像信号处理领域中得到广泛应用,图像形态学的用途主要是获取物体拓扑和结构信息,通过物体和结构元素相互作用的某些运算,得到物体更本质的形态。
在图像处理中形态学主要应用是:(1)利用形态学的基本运算,对图像进行观察和处理,从而达到改善图像质量的目的;(2)描述和定义图像的几何参数和特征,如面积、周长、连通度、颗粒度、骨架和方向性等。
而腐蚀与膨胀是数学形态学最基本的算法,使得腐蚀与膨胀方法的研究价值得到更大的提升。
图像形态学腐蚀与膨胀方法在很多方面被应用,本文以图像的腐蚀与膨胀方法的理论分析为重点,围绕着其在众多图像处理方案中的出色表现,逐渐联系到图像的内容。
用多层次的介绍手法展现出图像腐蚀与膨胀方法研究的重要内涵。
本文主要的工作包括:(1)掌握Visual C++6.0软件的使用。
(2)深入学习图像形态学腐蚀与膨胀的基础理论,研究腐蚀与膨胀在图像处理中的应用。
(3)针对图像形态学腐蚀与膨胀方法进行研究,通过Visual C++6.0软件实现腐蚀与膨胀算法,掌握腐蚀与膨胀算法的实现过程。
本文集中阐述腐蚀与膨胀是如何进行水平腐蚀、垂直腐蚀、全方位腐蚀、水平膨胀、垂直膨胀、全方位膨胀、开运算以及闭运算的完成原理、步骤和它们的具体实现过程。
通过一系列的研究才能更加明确腐蚀与膨胀方法处理在图像信息处理的发展历程中发挥了不可替代的作用。
关键词:图像处理;数学形态学;腐蚀;膨胀AbstractWith the advance in computer technology, communication technology changes rapidly updated and developed, image processing technology has make a spurt of progress of development in recent years, and successfully applied to almost all domains related to the formation of image, and play a very important role. It uses the computer to carry out a series of operation on the digital image, so as to obtain some expected results, image processing often using image processing technology to improve the quality of the image. Now the image processing is still in constant development, extending more application fields, believe that the gradual development of the digital image processing technology will make our life better.In image processing, the theory foundation of mathematical morphology is applied widely in the field of digital image signal processing, use of image morphology is the main access to the object topology and structure information, some operational through the object and the structural elements of interaction, obtained the object state of nature. In image processing, morphological main applications are: (1) by using basic operation of morphology, were observed and the processing of the image, so as to achieve the purpose of improving the image quality. (2)The definition and description of image geometric parameters and characteristics, such as area, perimeter, connectivity, particle size, frame and direction etc.. The corrosion and expansion is the basic algorithm of mathematical morphology which makes the research value of corrosion and expansion method for the greater increase. Method of image morphology of corrosion and expansion is used in many aspects, this paper with the method of image corrosion expansion theory analysis as the key point, around its excellent performance in many images processing scheme, gradually linked to the content of the image. To show the image of corrosion and expansion method research important content of multi-level presentation techniques. The main work of this paper includes: (1) using Visual C++6.0 Software. (2) Study the basic theory and the expansion of the image morphology of corrosion depth, application and expansion of research in image processing corrosion. (3) According to a study on the method of image morphology of corrosion and expansion, realization of erosion and dilation algorithm by Visual C++6.0 Software, master the implementation process of erosion and dilation algorithm. This paper focuses on how the level of corrosion andexpansion of corrosion, a full range of vertical horizontal expansion, vertical expansion, a full range expansion, open operation and close operation to complete the principle, steps and their realization.Through the research to a series of more clear corrosion and expansion method has played an irreplaceable role in the development of image processing.Key words: Image processing; mathematical morphology; corrosion; expansion目录1 绪论 (1)1.1引言 (1)1.2课题研究现状 (1)1.3课题目的和意义 (2)2 开发环境VISUAL C++介绍 (3)2.1V ISUAL C++6.0介绍 (3)2.2V ISUAL C++软件平台介绍 (4)2.2.1单文档格式 (4)2.2.2界面板部分 (5)2.2.3程序控制部分 (5)2.3设计中的MFC介绍 (5)3 腐蚀与膨胀的基本原理 (7)3.1图像的腐蚀 (7)3.2图像的膨胀 (8)3.3开运算 (10)3.4闭运算 (11)4 图像腐蚀与膨胀处理 (12)4.1CDIB类库的建立 (12)4.1.1CDIB类库的功能 (12)4.1.2CDIB类的构造 (12)4.2图像腐蚀与膨胀处理的实现 (15)4.2.1水平腐蚀处理实现 (15)4.2.2垂直腐蚀处理实现 (17)4.2.3全方向腐蚀处理实现 (19)4.2.4水平膨胀处理实现 (22)4.2.5垂直膨胀处理实现 (24)4.2.6全方位膨胀处理实现 (26)5 实验结果及讨论 (29)5.1腐蚀处理结果 (29)5.2膨胀处理结果 (31)5.3开闭运算处理结果 (32)5.3结果讨论 (34)结论 (35)致谢 (37)参考文献 (38)附录A 英文原文 (39)附录B 汉语翻译 (47)1 绪论1.1 引言随着计算机技术的日益发展,图像信息已成为人类认识世界的重要知识来源,人们研究发现,人类从外界获得的信息约有75%来自图像。
图像的形态学方法
图像的形态学方法是一种基于图像形态学理论的图像处理方法,用于改变和分析图像的形状和结构。
它与传统的基于像素的图像处理方法不同,而是通过操作图像的形状和结构来实现对图像的处理。
形态学方法主要包括以下几个基本操作:
1. 腐蚀(Erosion):通过结构元素与图像进行卷积,将结构元素包含的图像区域缩小,以去除图像中小的细节和噪声。
2. 膨胀(Dilation):通过结构元素与图像进行卷积,将结构元素包含的图像区域扩大,以填充图像中的空洞和连接图像中的断线。
3. 开运算(Opening):先进行腐蚀操作,再进行膨胀操作,用于去除图像中的噪声和细小的物体。
4. 闭运算(Closing):先进行膨胀操作,再进行腐蚀操作,用于填充图像中的空洞和连接断线,以及平滑图像边缘。
5. 形态学梯度(Morphological Gradient):通过膨胀和腐蚀操作的差异,可以得到图像边缘的强度信息。
6. 顶帽变换(Top-Hat Transform):通过原图像与开运算的结果之差,可以得到图像中的小亮斑或小暗斑。
7. 底帽变换(Bottom-Hat Transform):通过闭运算的结果与原图像之差,可以得到图像中的大亮斑或大暗斑。
这些形态学操作可以单独使用,也可以组合使用,以实现不同的图像处理任务,如图像去噪、边缘检测、形状分析等。
形态学方法在计算机视觉、图像分析和模式识别等领域中得到了广泛的应用。
形态学图像分析的相关技术及应用形态学图像分析是一种图像处理技术,它通过对图片进行形态学运算、形态学变换等操作,从而提取图像中的形态学信息。
这种技术在医学、机器视觉、遥感等领域有着广泛的应用。
1. 形态学运算形态学运算是形态学图像分析中的一项重要技术。
它主要包括膨胀、腐蚀、开运算和闭运算等操作。
膨胀操作可以扩展物体,并将结果与结构元素进行比较。
如果结果的形状与结构元素相同,则该元素被保留;如果形状不同,则该元素被舍弃。
腐蚀操作可以缩小物体,并将结果与结构元素进行比较。
如果结果的形状与结构元素相同,则该元素被保留;如果形状不同,则该元素被舍弃。
开运算将图像先进行腐蚀操作,然后再进行膨胀操作。
这样可以去除图像中的小物体和孔洞。
闭运算将图像先进行膨胀操作,然后再进行腐蚀操作。
这样可以填充图像中的小孔洞和连接分散的物体。
2. 形态学变换形态学变换是利用形态学运算对图像进行的一种变换。
它包括几何变换和灰度变换两种类型。
几何变换包括平移、旋转、缩放和镜像等操作。
这些变换可以改变图像的形状和位置,从而实现对图像的修正。
灰度变换则是对图像像素的灰度值进行处理。
这些变换包括二值化、亮度调整、直方图均衡化等。
这些变换可以增强图像对比度、优化图像质量,使得图像更加清晰、鲜明。
3. 形态学图像分析的应用形态学图像分析在医学领域有着广泛的应用。
例如,在病理学中,可以利用形态学图像分析技术对组织样本进行全息采集,然后对图像中的细胞和组织结构进行分类和分析,以达到病理诊断目的。
在机器视觉领域,形态学图像分析可以用于识别物体的形状、大小、方向等特征,从而实现自动检测和分类。
在遥感领域,形态学图像分析可以用于地理信息系统(GIS)中的土地分析、水文分析等,从而为城市规划、灾害预测等提供支持。
总之,形态学图像分析是一种非常有用的图像处理技术,它可以帮助我们从千变万化的图像中提取出所需的形态学信息,提高数据分析的效率和准确度。
实验三图像分析实验——图像分割、形态学及边缘与轮廓分析一、实验条件PC机数字图像处理实验教学软件大量样图二、实验目的1、熟悉图像形态学分析的基本原理,观察不同形态学方法处理的结果;2、熟悉图像阈值分割、区域生长、投影及差影检测和模板匹配的基本原理,观察处理的结果;3、熟悉图像边缘检测、Hough平行线检测、轮廓提取及跟踪和种子填充的基本原理,观察处理的结果;4、了解图像矩、空穴检测、骨架提取的基本原理,观察处理的结果。
三、实验原理本次实验侧重于演示观察,由于内容繁多,并且系统中已有部分实验项目的原理说明,因此实验原理及编程实现步骤这里不再详细叙述,有兴趣的同学可以查阅数字图像处理方面的有关书籍。
四、实验内容1、图像形态学分析内容包括:图像膨胀、图像腐蚀、开运算、闭运算和图像细化针对二值图像进行处理,有文字说明,实验步骤中将详细介绍其使用方法。
2、图像分割内容包括:阈值分割、区域生长、投影检测、差影检测和模板匹配阈值分割:支持灰度图像。
从图库中选择图像分割中的源图, 然后执行图像分析→图像分割→阈值分割, 比较原图和分割后的图, 对照直方图分析阈值分割的特点。
对源图再执行一次图像变换→点运算→阈值变换, 比较分析阈值变换和阈值分割的结果。
区域生长:支持灰度图像。
操作方法与阈值分割类似,比较分析其与阈值分割的不同。
投影检测:只支持二值图像。
从图库中选择投影检测中的源图, 然后执行图像分析→投影检测→水平投影, 然后再垂直投影, 记录下检测部分的水平和垂直方向的位置。
如有必要, 在检测之前, 对图像进行平滑消噪。
差影检测:支持灰度图像。
从图库中选择图像合成中的源图, 然后执行图像分析→图像合成→图像相减, 在弹出的文件对话框中选择图库图像合成中的模板图像,观察分析差影结果。
模板匹配:支持灰度图像。
从图库中选择模板匹配中的源图, 然后执行图像分析→模式识别→模板匹配, 在弹出的文件对话框中选择图库模板匹配中的模板图像, 观察分析结果。
图像形态学课程设计一、课程目标知识目标:1. 学生能够理解图像形态学的基本概念,掌握其基本操作,如腐蚀、膨胀、开运算和闭运算。
2. 学生能够运用形态学算法对图像进行处理,解决实际问题,如图像分割、特征提取等。
3. 学生了解形态学在计算机视觉、图像处理等领域的应用。
技能目标:1. 学生能够运用编程工具(如Python、MATLAB等)实现基本的形态学算法。
2. 学生能够通过实际案例,运用形态学方法对图像进行分析和解决问题。
3. 学生具备一定的图像处理实际操作能力,能够针对不同问题选择合适的形态学算法。
情感态度价值观目标:1. 学生培养对图像处理技术的兴趣,激发学习热情,提高自主学习能力。
2. 学生通过团队合作,培养沟通协调能力和团队精神。
3. 学生在学习过程中,认识到图像处理技术在实际生活中的应用价值,增强社会责任感和创新意识。
分析课程性质、学生特点和教学要求,本课程旨在帮助学生掌握图像形态学的基本知识,提高实际操作能力,培养学生对图像处理技术的兴趣和热情。
通过具体的学习成果分解,为后续的教学设计和评估提供明确依据。
二、教学内容1. 图像形态学基本概念:介绍形态学的起源、发展及其在图像处理领域的重要性。
- 教材章节:第一章,第1-2节2. 形态学基本操作:讲解腐蚀、膨胀、开运算、闭运算等基本操作及其应用。
- 教材章节:第二章,第1-4节3. 形态学算法应用:介绍形态学在图像分割、特征提取、边缘检测等方面的应用。
- 教材章节:第三章,第1-3节4. 编程实践:结合Python、MATLAB等编程工具,实现形态学算法。
- 教材章节:第四章,第1-2节5. 实际案例分析:分析形态学在现实生活中的应用案例,如医学图像处理、交通监控等。
- 教材章节:第五章,第1-2节6. 形态学算法优化与拓展:探讨优化形态学算法的方法,如并行计算、快速算法等。
- 教材章节:第六章,第1-2节教学内容安排和进度:本课程共计16课时,按照以下进度进行教学:1. 第1-2课时:图像形态学基本概念2. 第3-6课时:形态学基本操作3. 第7-10课时:形态学算法应用4. 第11-12课时:编程实践5. 第13-14课时:实际案例分析6. 第15-16课时:形态学算法优化与拓展三、教学方法1. 讲授法:通过系统讲解,使学生掌握图像形态学的基本概念、原理和操作方法。
图像形态学(⼀)--构造结构元素图像形态学之结构元素strel构造结构元素matlab中使⽤strel()函数来创建⼀个结构元素,这个结构元素是strel对象,代表⼀个扁平的形态结构元素SE = strel('diamond',r)diamond:菱形结构元素,r指从原点到菱形点的距离SE = strel('disk',r,n)disk:圆形结构元素,r指定半径,n指定⽤于近似圆盘形状的线性结构元素的数量?SE = strel('octagon',r)octagon:⼋边形结构元素,r指从原点到⼋边形边的距离(r必须为3的⾮负倍数)SE = strel('line',len,angle)line:线性结构元素,len:长度,angle:⾓度SE = strel('rectangle',[m n])创建⼀个⼤⼩为[m n]的矩形结构元素SE = strel('square',w)创建⼀个宽度为w 像素的正⽅形结构元素SE = strel('cube',w)创建⼀个宽度为w像素的3D⽴体结构元素SE = strel('cuboid',[m n p])创建⼀个⼤⼩为[m n p]的3-D长⽅体结构元素SE = strel('sphere',r)创建⼀个半径为r像素的3-D球形结构元素。
strel的对象功能函数作⽤imdilate膨胀图像imerode腐蚀图像imclose形态接近图像imopen形态上开放的图像imbothat底帽过滤imtophat⾼帽过滤bwhitmiss⼆进制未命中操作decompose分解后的结构元素的返回顺序reflect反映结构元素translate翻译结构元素imfill(BW,'holes')空洞填充。