第九章—形态学图像处理
- 格式:ppt
- 大小:2.34 MB
- 文档页数:39
数字图像处理中的形态学图像处理技术数字图像处理是一种高级技术,它可以让人们对图片进行高效处理。
其中一项关键技术是形态学图像处理技术。
本文将重点介绍形态学图像处理技术的实现原理、应用场景以及优点。
一、如何实现形态学图像处理技术在数字图像处理中,形态学图像处理技术以数学形态学为理论基础。
数学形态学是一种数学分支,其研究对象不仅包括数字图像,还包括几何图形、拓扑图形等。
形态学图像处理技术是基于形态学思想而发展出来的,可以对数字图像进行缩小、填充、提取轮廓等处理。
形态学图像处理技术的主要实现原理包括腐蚀和膨胀两种操作。
腐蚀是利用结构元素对图像进行的一种缩小操作,它可以使得图像中的细小灰度部分逐渐消失;膨胀则是利用图像进行一种膨胀操作,它可以使图像中的细小灰度部分逐渐增大并扩展到附近像素。
二、形态学图像处理技术的应用场景形态学图像处理技术在许多领域都有广泛应用,例如医学图像分析、汽车驾驶辅助、人脸识别等。
以下将重点介绍几个典型的应用场景。
1、医学图像分析医学图像分析是医学领域重要的研究领域之一,它包括CT、MRI和X光等多种形式。
形态学图像处理技术可以有效的提取出CT图像中的主干血管、肿瘤等重要区域,对于诊断疾病有重要帮助。
2、汽车驾驶辅助在汽车驾驶辅助中,形态学图像处理技术可以有效地提取出车辆周围的区域,这对于车辆原地停车、跟车行车等操作有着重要的作用。
3、人脸识别在人脸识别中,形态学图像处理技术可以提取出人脸的特征数据,这些数据可以用来做人脸比对、活体检测等。
在安防、金融等领域有广泛应用。
三、形态学图像处理技术的优点形态学图像处理技术具有如下优点:1、提高了图像处理效率:形态学图像处理技术可以快速的将图像处理成为我们所需要的形态,提高了图像处理效率。
2、增加了图像处理的准确度:形态学图像处理技术可以将图像中的多余部分进行过滤,使得我们所关注的部分更加突出,增加了图像处理的准确度。
3、可扩展性强:形态学图像处理技术可以应用于不同领域的图像处理中,具有很强的可扩展性。
形态学图像处理实验1.算法原理1)提取与图像边界融合的颗粒可利用区域填充算法。
如图1所示为源图像,可将图像先转换为二值图像,然后对其进行取反,这样进行区域填充的结果将为与边界相连的颗粒,再与源图像进行比较,即可得出在源图像中与边界相连的颗粒图像。
2)提取彼此交叠的颗粒可利用图像的腐蚀与膨胀操作。
先用模板对图像进行腐蚀操作,由于相交叠的颗粒面积必然比独立的颗粒大,因此腐蚀操作之后剩下的部分为交叠颗粒的部分,再对其进行膨胀,将其与源图像进行比较操作,则可得出交叠的颗粒图像。
3)提取不交叠的颗粒得出交叠的颗粒之后,用源图像对其相减,则得出的为独立分布的颗粒图像。
2.Matlab源代码clear allclcorigin = imread('E:\Documents\BUPT\DIP\第三次作业\grain.jpg');imshow(origin);title('原图');origin = rgb2gray(origin);filterResult = medfilt2(origin);[m,n] = size(origin);%%%%%%%%%%%%取与边界融合的粒子%%%%%%%%%%%%%binaryIm = im2bw(origin);tmp = ~binary Im; %tmp为取反图像fieldFilling = imfill(tmp,'holes');figure, imshow(fieldFilling);title('区域填充结果');boudaryGrains = origin;for i = 1:mfor j = 1:nif fieldFilling(i,j) ==1boudaryGrains(i,j) = 0;endendendfigure, imshow(boudaryGrains);title('与边界融合的粒子结果');%%%%%%%%%%%取交叠与未交叠的粒子%%%%%%%%%%%%mask1 = strel('ball',12,12);%mask2 = ones(13,13);mask2 = strel('ball',7,7);mask3 = strel('disk',4);mask4 = strel('ball',6,6);result1 = imerode(filterResult,ones(15,15));result2 = filter2(fspecial('average',7),im2double(result1)); result2 = medfilt2(result2);result2 = im2uint8(result2);result3 = imdilate(result2,mask1);figure,imshow(result2);title('第一次腐蚀结果'); figure,imshow(result3);title('第一次膨胀结果');result4 = origin;for i = 1:mfor j = 1:nif result3(i,j) <=20result4(i,j) = 0;elseresult4(i,j) = origin(i,j);endendendfigure,imshow(result4);title('阈值处理结果');result5 = imerode(result4,mask4);result6 = imdilate(result5,mask4);figure,imshow(result6);title('交叠粒子结果');result7 = origin-result4;result8 = imerode(result7,mask4);result9 = imdilate(result8,mask4);figure,imshow(result9);title('未交叠粒子结果');3. 运行结果分析1) 提取与边界融合的颗粒原图区域填充结果与边界融合的粒子结果第一次腐蚀所示结果为在腐蚀之后进行了一次中值滤波和一次5X5均值滤波的结果,为使腐蚀的结果更好,去除独立颗粒的腐蚀残留图像。