形态学图像处理方法
- 格式:pptx
- 大小:7.51 MB
- 文档页数:23
形态学图像处理
形态学图像处理是一种基于形态学理论的图像处理技术,它是由模式识别、数字信号处理和图像处理领域的研究者们发展起来的。
它主要关注图像中的结构特征,而不是色彩或亮度等特征。
形态学图像处理方法包括:形态学运算、形态学变换和形态学分割。
形态学运算是以图像的形状为基础的处理方法,包括腐蚀(erosion)、膨胀(dilation)、开运算(opening)、闭运算(closing)、击中-击不中(hit-miss)等。
形态学变换是对图像进行形状变换的方法,包括骨架变换(skeleton transform)、平滑变换(smoothing transform)、梯度变换(gradient transform)、拉普拉斯变换(laplacian transform)等。
形态学分割是以形态学运算为基础的图像分割方法,包括区域生长、边缘检测、基于水平集的分割等。
形态学开运算和闭运算公式
形态学开运算和闭运算是图像处理中常用的两种形态学操作。
形态学开运算可以用来消除图像中的小噪点,并使边缘更加清晰;形态学闭运算则可以填充图像中的空洞,并使目标更加完整。
形态学开运算的公式可以表示为:
开运算(A) = 腐蚀(A, B) ⊛ 膨胀(A, B)
其中,A代表输入图像,B代表结构元素(也称为模板),⊛代表形态学腐蚀操作,⊕代表形态学膨胀操作。
形态学闭运算的公式可以表示为:
闭运算(A) = 膨胀(A, B) ⊛ 腐蚀(A, B)
形态学开运算和闭运算的操作步骤如下:
1. 对输入图像A进行形态学腐蚀操作,记为C1 = 腐蚀(A, B);
2. 对C1进行形态学膨胀操作,记为D1 = 膨胀(C1, B);
3. 对输入图像A进行形态学膨胀操作,记为D2 = 膨胀(A, B);
4. 对D2进行形态学腐蚀操作,记为C2 = 腐蚀(D2, B);
5. 形态学开运算结果为D1,形态学闭运算结果为C2。
形态学开运算和闭运算可以应用于各种图像处理任务中。
例如,在目标检测中,可以先进行形态学开运算来消除噪点和细小的边缘,然后再进行闭运算来填充目标内部的空洞,从而得到更准确的目标边界。
形态学开运算和闭运算是图像处理中常用的操作,可以通过腐蚀和膨胀操作来改善图像的质量和准确性。
它们在各种图像处理任务中发挥着重要的作用,对于提高图像处理的效果具有重要的意义。
医学图像处理中的形态学操作医学图像处理一直是医学领域里非常重要的研究领域之一,这种领域主要涉及到对人体内部特定区域的图像进行分析、处理和重建。
其中,形态学操作是一种基本的图像分析技术,它可以帮助医生或研究人员更好地对图像进行处理和分析,提取出感兴趣的区域和特征,从而对临床诊断和治疗提供更准确有效的帮助。
形态学操作,简单来说,就是对一个图像或一组图像进行形状变换。
这种变换可以通过一些数学操作来实现,当应用到医学图像处理中时,可以对图像中的结构、纹理和形状等特征进行准确的提取和描述。
中心对称和扩张缩小是形态学操作中常见的两种操作。
中心对称操作可以将原始图像中不规则的区域变为一个规则的圆形;而扩张缩小操作则可以将区域内边缘和中心点位置进行修改,从而改变图像中边缘或内部的形状。
在外科手术前,医生通常需要对患者的CT扫描图像进行分析和处理,以确定手术方式和确保手术的成功。
利用形态学操作可以将图像中的组织区域分割出来,准确描述各个器官的形态和位置。
通过对CT扫描图像进行中心对称操作和扩张缩小操作,可以将其转换为更便于分析的形态,准确描述并确定手术范围。
除了CT扫描图像外,形态学操作还可以应用于MRI图像分析、X光图像分析、超声波图像分析和眼底图像诊断等多个领域。
例如,在糖尿病视网膜病变的诊断中,医生可以利用形态学运算算法来提取图像中的权值特征,从而更好地判断病变区域的位置和范围。
又例如,对血管病变或导致血管壁变薄的其他因素进行分析,形态学运算可以有效提取出血管区域的形态特征,发现狭窄或扩张等异常情况。
总之,形态学操作作为医学图像处理中基本的技术方法之一,可以帮助医生和研究人员更好地分析、诊断和治疗各种疾病。
在医学图像处理的应用中,形态学操作不仅可以提高手术或治疗的成功率,还可以更好地了解人体内部组织和器官的形态特征,推动医学科学的发展。
形态学方法的基本操作包括膨胀、腐蚀、开运算和闭运算。
这些操作在形态学变换中起着重要的作用。
以下是这些操作的可视化效果:
1. 膨胀操作:膨胀操作可以扩大图像中高亮区域,使图像变得更加明亮。
在形态学变换中,膨胀操作通常被用于突出图像中的细节和特征。
2. 腐蚀操作:腐蚀操作可以缩小图像中高亮区域,使图像变得更加暗淡。
在形态学变换中,腐蚀操作通常被用于消除图像中的噪声和小的细节。
3. 开运算:开运算是先进行腐蚀操作,再进行膨胀操作。
这种操作可以去除图像中的小点、毛刺和小桥,同时总的位置和形状不会发生改变。
在形态学变换中,开运算通常被用于提取图像中的轮廓和线条。
4. 闭运算:闭运算是先进行膨胀操作,再进行腐蚀操作。
这种操作可以填平图像中的小湖(即小孔),弥合小的裂缝,同时总的位置和形状不会发生改变。
在形态学变换中,闭运算通常被用于填充图像中的空洞和小的黑点。
这些形态学方法的基本操作可以通过组合和变换来应用于图像处理中,以实现各种不同的视觉效果和应用。
实验三图像形态学处理一.实验目的及要求1.利用MATLAB研究二值形态学图像处理常用算法;2.掌握MATLAB形态学图像处理基本操作函数的使用方法;3.了了解形态学的基本应用。
二、实验内容(一)研究以下程序,分析程序功能;输入执行各命令行,认真观察命令执行的结果。
熟悉程序中所使用函数的调用方法,改变有关参数,观察试验结果。
1.膨胀与腐蚀(Dilation and Erosion)(1)对简单二值图像进行膨胀与腐蚀clear all, close allBW = zeros(9,10);BW(4:6,4:7) = 1;BWSE = strel('square',3)BW1 = imdilate(BW,SE)BW2 = imerode (BW,SE)figure(1),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW2), title(' Eroded Image ');修改参数:clear all, close allBW = zeros(9,10);BW(4:8,4:8) = 1;BWSE = strel('square',3)BW1 = imdilate(BW,SE)BW2 = imerode (BW,SE)figure(1),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(BW), title(' Original Image ');subplot(1,2,2), imshow(BW2), title(' Eroded Image ');(2)对文本图像进行膨胀与腐蚀clear all, close allI = imread('C:\Users\Administrator\Desktop\broken_text.tif'); SE = [0,1,0;1,1,1;0,1,0]BW1 = imdilate(I, SE);BW2 = imerode (I, SE);figure(1),subplot(1,2,1), imshow(I), title(' Original Image ');subplot(1,2,2), imshow(BW1), title(' Dilated Image ');figure(2),subplot(1,2,1), imshow(I), title(' Original Image ');subplot(1,2,2), imshow(BW2) , title(' Eroded Image ');修改参数:clear all, close allI = imread('C:\Users\Administrator\Desktop\broken_text.tif'); SE = [0,0,0;0,0,0;0,0,0]BW1 = imdilate(I, SE);BW2 = imerode (I, SE);figure(1),subplot(1,2,1), imshow(I), title(' Original Image '); subplot(1,2,2), imshow(BW1), title(' Dilated Image '); figure(2),subplot(1,2,1), imshow(I), title(' Original Image '); subplot(1,2,2), imshow(BW2) , title(' Eroded Image ');2. 开、闭运算(Open and Close)clear all, close allI = imread('cameraman.tif');bw = ~im2bw(I,graythresh(I));se = strel('disk',5);bw2 = imopen(bw,se);subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw2), title('After opening')bw3 = imclose(bw,se);figure;subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw3), title('After Closing')修改参数:clear all, close allI = imread('cameraman.tif');bw = ~im2bw(I,graythresh(I));se = strel('disk',8);bw2 = imopen(bw,se);subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw2), title('After opening')bw3 = imclose(bw,se);figure;subplot(1,2,1), imshow(bw), title('Thresholded Image')subplot(1,2,2), imshow(bw3), title('After Closing')3. 击中/击不中变换(hit-and-miss operation)clear all, close allbw = [0 0 0 0 0 00 0 1 1 0 00 1 1 1 1 00 1 1 1 1 00 0 1 1 0 00 0 1 0 0 0]interval = [0 -1 -11 1 -10 1 0]bw2 = bwhitmiss(bw,interval)subplot(1,3,1), imshow(bw), title(' Original Image ');subplot(1,3,2), imshow(interval), title(' Interval Image ');subplot(1,3,3), imshow(bw2) , title('after hit/miss transformation');修改参数:clear all, close allbw = [0 0 0 0 0 00 0 1 1 0 00 1 1 1 1 00 1 1 1 1 00 0 1 1 0 00 0 1 0 0 0]interval = [0 0 00 1 00 1 0]bw2 = bwhitmiss(bw,interval)subplot(1,3,1), imshow(bw), title(' Original Image ');subplot(1,3,2), imshow(interval), title(' Interval Image ');subplot(1,3,3), imshow(bw2) , title('after hit/miss transformation')4.细化与骨架抽取clear all, close allBW = ~ imread('logo.tif');BW1 = bwmorph(BW,'thin',Inf);BW2 = bwmorph(BW,'skel',Inf);subplot(1,3,1), imshow(BW), title(' Original Image ');subplot(1,3,2), imshow(BW1), title(' Thinned Image ');subplot(1,3,3), imshow(BW2), title(' Image skeleton');help bwmorph(二)用MATLAB二值数学形态学函数编程提取’rice.gif’图像中的物体边界。
渐进式形态学滤波渐进式形态学滤波是一种基于形态学理论的图像处理方法。
与传统的形态学滤波方法不同,渐进式形态学滤波可以通过多次滤波逐步降低噪声水平,同时保持图像的边缘和细节信息。
一、形态学滤波原理形态学滤波原理建立在形态学膨胀和腐蚀的基础上,这两种基本操作可以较好地去除图片中的噪声。
形态学滤波器一般是一组包含结构元素的遮罩,用于对图像进行滤波操作。
形态学滤波器对结构元素的大小、形状、位置等有着很强的依赖性,同时也受到遮罩的选取和定位方案等因素的影响。
传统形态学滤波器在去除噪声的同时对边缘和细节等图像信息也有不可避免的影响。
一些高级感知噪声去除技术,如小波去噪和视频处理等,被广泛应用于去除噪声和保留图像的边缘和特定信息等方面。
渐进式形态学滤波就是在这样的背景下催生出来的。
二、渐进式形态学滤波原理渐进式形态学滤波同时使用了多个尺度大小的结构元素进行滤波,从而逐渐降低图像的噪声水平,并同时保留图像的边缘和细节信息。
滤波过程通过使用一次大结构元素的滤波结果作为下次滤波的初始图像,重复进行几次滤波,直到达到预期的噪声和信息保留效果。
三、渐进式形态学滤波算法1.预处理,将待滤波的图像扩展成无限大。
这可以通过在图像四周复制像素的方式实现。
2.将大尺度结构元素应用到图像中,得到一组初始提取信息。
3.通过使用较小尺度的结构元素,过滤掉大尺度结构元素中已经提取到的信息,得到一组去噪结果。
4.使用每次滤波得到的结果作为下一步滤波的初始图像。
5.重复步骤3-4,逐渐减小结构元素的尺寸,直到达到预期的噪声水平和信息保留效果。
四、总结渐进式形态学滤波是一种基于形态学理论的图像处理方法,它可以逐步降低图像噪声,同时保留图像的边缘和细节信息。
在应用过程中,可以通过预处理、选择不同尺度的结构元素、逐步优化初始图像等多种方式进行调整和优化,以达到最佳的效果。
数学形态学在图像处理中得到了广泛的应用,包括边缘提取,区域填充,细化与骨架提取,对象标注,噪声滤除等。
一,边缘提取对二值图像A进行边缘提取,可以通过先由结构元素se对A进行腐蚀,然后用原图像减去腐蚀后的图像得边缘。
类似地,可以先由se对A进行膨胀,然后用膨胀后的图像减去A得到边缘。
代码如下:im=imread('face8.jpg');im1=im2bw(im);imshow(im1);se=strel('diamond',3);im2=imerode(im1,se);ed1=double(im1)-double(im2);im3=imdilate(im1,se);ed2=double(im3)-double(im1);imshow(im1);title('原二值图像'); %图像二值化的图像figure,subplot(121);imshow(ed1);title('原图与腐蚀后的图像相减');subplot(122);imshow(ed2);title('膨胀后的图像与原图相减');程序运行输出结果:二,区域填充区域填充以集合的膨胀、求补、和交集为基础。
下面用形态学的方法填充图像eight.tif:在经过二值化求反后形成图像中的空洞,在经过区域填充。
代码如下:I=imread('eight.tif');bw1=im2bw(I);bw1=~bw1;bw2=bwfill(bw1,'holes');subplot(221),imshow(I);subplot(223),imshow(bw1);subplot(224),imshow(bw2);程序运行输出结果如下:。