6. 一般形式的柯西不等式
- 格式:ppt
- 大小:334.00 KB
- 文档页数:9
一般形式的柯西不等式柯西不等式是数学分析中一个重要的不等式定理,用来描述两个函数之间的关系。
它是由法国数学家奥古斯丁·路易·柯西于1821年提出的。
柯西不等式在解析函数论、泛函分析等领域有广泛的应用。
柯西不等式的一般形式可以表述如下:设函数f(x)和g(x)在闭区间[a,b]上连续,且g(x)不等于0。
那么有以下不等式成立:∫[a,b] f(x)g(x)dx ≤ √( ∫[a,b] f^2(x)dx * ∫[a,b]g^2(x)dx )在这个不等式中,∫[a,b] f(x)g(x)dx 表示函数 f(x) 和 g(x) 的乘积函数在闭区间上的积分,∫[a,b] f^2(x)dx 和∫[a,b] g^2(x)dx分别表示函数 f(x) 和 g(x) 的平方函数在闭区间上的积分。
柯西不等式的证明可以通过引入一个辅助函数 h(x) 来完成。
辅助函数 h(x) 的定义为 h(x) = f(x) - (k*g(x)),其中 k 是一个常数,通过适当选择 k 的值,可以使得 h(x) 关于 x 的积分为0。
对于这个辅助函数 h(x),通过平方的方式可以得到∫[a,b] h^2(x)dx = ∫[a,b] (f(x) - k*g(x))^2dx。
展开 h^2(x) 的平方并化简后可以得到∫[a,b] h^2(x)dx = ∫[a,b] (f^2(x) - 2kf(x)g(x) + k^2g^2(x))dx。
根据积分的性质,可以得到∫[a,b] h^2(x)dx = ∫[a,b] f^2(x)dx - 2k∫[a,b] f(x)g(x)dx +k^2∫[a,b] g^2(x)dx。
为了满足∫[a,b] h^2(x)dx = 0,必须要求∫[a,b] h^2(x)dx 的系数为0。
即:- 2k∫[a,b] f(x)g(x)dx = 0,即∫[a,b] f(x)g(x)dx= k∫[a,b] g^2(x)dx。
第三讲一般形式的柯西不等式一般形式的柯西不等式,是基于柯西不等式推广出来的不等式形式。
柯西不等式是数学分析中一条常用的不等式,它描述了两个向量之间的内积与它们的范数之间的关系。
柯西不等式的一般形式则扩展了这个概念,可以应用到更多的情况中。
假设有两个实数向量X=[x1, x2, ..., xn]和Y=[y1,y2,...,yn],那么它们的内积可以定义为:X·Y = x1*y1 + x2*y2 + ... + xn*yn而柯西不等式表示为:X·Y,≤,X,,Y其中,X,表示向量X的范数,定义为:X, = sqrt(x1^2 + x2^2 + ... + xn^2)柯西不等式右边的,X,和,Y,即为两个向量的范数,因此它可以对任意实数向量成立。
然而,柯西不等式的应用范围不仅仅局限于实数向量,我们可以将其推广到更一般的形式。
将柯西不等式中两个实数向量推广到复数空间,就可以得到一般形式的柯西不等式。
在复数空间中,两个复数向量X=[x1, x2, ..., xn]和Y=[y1,y2,...,yn]的内积可以定义为:X·Y* = x1*y1* + x2*y2* + ... + xn*yn*其中,*表示复数的共轭。
同样可以定义复数向量的范数,即:X, = sqrt(,x1,^2 + ,x2,^2 + ... + ,xn,^2)在复数空间中,一般形式的柯西不等式就可以表示为:X·Y*,≤,X,,Y一般形式的柯西不等式的推广,使得我们可以将柯西不等式应用到更加广泛的场景中,包括复数空间以及其他更复杂的向量空间。
这种推广形式的柯西不等式在数学分析、函数论、概率论等多个数学领域中都具有重要的应用价值。
总结起来,一般形式的柯西不等式是柯西不等式在复数空间和更一般的向量空间中的推广形式。
通过它,我们可以描述两个向量之间的内积与它们的范数之间的关系。
这个不等式在数学分析和其他数学领域中都具有重要的应用意义。
柯西不等式各种形式证明及其应用柯西不等式是由大数学家柯西()在研究数学分析中“流数”问题时得到。
但从历史角度讲,该不等式应当称为不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题方面得到应用。
一、柯西不等式各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //==扩展:()()()222222222123123112233n n n n a a a a b b b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立222111nnn k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑三角形式ad bc=等号成立条件:三角形式证明:()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+-≥注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式证明:()()123123112233222222312322222222112233123123=,,,,,,,,,cos ,cos ,cos ,1n n n n n n n n n nm a a a a n b b b b m n a b a b a b a b m n m na a ab b b b m nm n a b a b a b a b a a a a b b b b =⋅=++++==++++++++≤∴++++≤++++++++令一般形式211212⎪⎭⎫⎝⎛≥∑∑∑===n k k k nk k nk k b a b a1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
柯西不等式各种形式的证明及其应用柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。
但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。
柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。
柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。
一、柯西不等式的各种形式及其证明 二维形式在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式()()()22222bd ac d c b a+≥++等号成立条件:()d c b a bc ad //== 扩展:()()()222222222123123112233nn n n a a a a bb b b a b a b a b a b +++⋅⋅⋅++++⋅⋅⋅+≥+++⋅⋅⋅+等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==⎛⎫==⋅⋅⋅= ⎪=⋅⋅⋅⎝⎭当或时,和都等于,不考虑二维形式的证明:()()()()()()22222222222222222222222,,,220=ab c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立三角形式ad bc≥=等号成立条件:三角形式的证明:222111n nn k k k k k k k a b a b ===⎛⎫≥ ⎪⎝⎭∑∑∑()()22222222222222222-2a b c d a b c d ac bd a ac c b bd d a c b d =++++≥+++++≥-+++=-+- 注:表示绝对值向量形式()()()()123123=,,,,,,,,2=n n a a a a b b b b n N n R αβαβαββαλβλ≥⋅⋅⋅⋅=⋅⋅⋅∈≥∈,等号成立条件:为零向量,或向量形式的证明:()()123123112233112233=,,,,,,,,,cos ,,cos ,1n n n n n n m a a a a n b b b b m n a b a b a b a b m n m nm nm n a b a b a b a b =⋅=++++==≤∴++++≤令一般形式211212⎪⎭⎫ ⎝⎛≥∑∑∑===nk k k n k k nk kb a b a 1122:::n n i i a b a b a b a b ==⋅⋅⋅=等号成立条件:,或 、均为零。
高中数学复习系列---不等式(柯西不等式)【柯西不等式的主要内容】 1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值定理、柯西积分不等式、柯西判别法、柯西方程等等. 2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 当且仅当 时, 等号成立. 变式10.若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20.若,,,a b c d R ∈;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:3. 一般形式的柯西不等式:设n 为大于1的自然数,,i i a b R∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立. (若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10.设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( .当且仅当 时, 等号成立. 变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(. 当且仅当n b b b === 21时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面都有联系. 所以, 它的重要性是不容置疑的! ☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆 的半径,≤例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。
二 一般形式的柯西不等式与推广,其特点可类比二维形式的柯西不等式来总结,左边是平方和的积,右边是积的和的平方.在使用时,关键是构造出符合柯西不等式的结构形式.[例1] 设x 1,x 2,…,x n 都是正数,求证:x 1+x 2+…+x n ≥x 1+x 2+…+x n.[思路点拨] 根据一般柯西不等式的特点,构造两组数的积的形式,利用柯西不等式证明.[证明] ∵(x 1+x 2+…+x n )⎝ ⎛⎭⎪⎫1x 1+1x 2+…+1x n=[(x 1)2+(x 2)2+…+(x n )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1x 12+⎝ ⎛⎭⎪⎫1x 22+…+⎝ ⎛⎭⎪⎫1x n 2≥ ⎝⎛⎭⎪⎫x 1·1x 1+x 2·1x 2+…+x n ·1x n 2=n 2,∴1x 1+1x 2+…+1x n ≥n 2x 1+x 2+…+x n.柯西不等式的结构特征可以记为:(a 1+a 2+…+a n )·(b 1+b 2+…+b n )≥(a 1b 1+a 2b 2+…+a n b n )2.其中a i ,b i ∈R +(i =1,2,…,n ),在使用柯西不等式时要善于从整体上把握柯西不等式的结构特征,正确地配凑出公式两侧的数是解决问题的关键.1.设a ,b ,c 为正数,且不全相等. 求证:2a +b +2b +c +2c +a >9a +b +c. 证明:构造两组数a +b ,b +c ,c +a ;1a +b,1b +c,1c +a,则由柯西不等式得(a +b +b +c +c +a )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥(1+1+1)2,①即2(a +b +c )⎝⎛⎭⎪⎫1a +b +1b +c +1c +a ≥9,于是2a +b +2b +c +2c +a ≥9a +b +c. 由柯西不等式知,①中有等号成立⇔a +b1a +b=b +c1b +c=c +a1c +a⇔a +b =b +c =c +a ⇔a =b =c .因为a ,b ,c 不全相等,故①中等号不成立, 于是2a +b +2b +c +2c +a >9a +b +c.[例2] (1)+求 1x + 4y + 9z的最小值;(2)设2x +3y +5z =29,求函数μ=2x +1+3y +4+5z +6的最大值. [思路点拨] (1)利用1x +4y +9z=⎝ ⎛⎭⎪⎫1x +4y +98(x +y +z ). (2)利用(2x +1+3y +4+5z +6)2= (1×2x +1+1×3y +4+1×5z +6)2. [解] (1)∵x +y +z =1, ∴1x +4y +9z =⎝ ⎛⎭⎪⎫1x +4y +9z (x +y +z );≥⎝⎛⎭⎪⎫1x·x +2y·y +3z·z 2=(1+2+3)2=36. 当且仅当x =y 2=z3,即x =16,y =13,z =12时取等号.所以1x +4y +9z的最小值为36.(2)根据柯西不等式,有(2x +1×1+3y +4×1+5z +6×1)2≤[(2x +1)+(3y +4)+(5z +6)]·(1+1+1) =3×(2x +3y +5z +11) =3×40=120.故2x +1+3y +4+5z +6≤230, 当且仅当2x +1=3y +4=5z +6, 即x =376,y =289,z =2215时等号成立.此时μmax=230.利用柯西不等式求最值时,关键是对原目标函数进行配凑,以保证出现常数结果.同时,要注意等号成立的条件.2.已知x ,y ,z ∈R ,且x -2y +2z =5,则(x +5)2+(y -1)2+(z +3)2的最小值是( ) A .20 B .25 C .36D .47解析:选C ∵[(x +5)2+(y -1)2+(z +3)2][12+(-2)2+22]≥[(x +5)+(-2)(y -1)+2(z +3)]2=324,当且仅当x +51=y -1-2=z +32,即x =-3,y =-3,z =1时取等号.故(x +5)2+(y -1)2+(z +3)2的最小值是36.3.若2x +3y +4z =11,则x 2+y 2+z 2的最小值为________. 解析:∵2x +3y +4z =11,∴由柯西不等式,得 (x 2+y 2+z 2)(4+9+16)≥(2x +3y +4z )2, 故x 2+y 2+z 2≥12129,当且仅当x 2=y 3=z 4,即x =2229,y =3329,z =4429时取等号.答案:121294.把一根长为12 m 的细绳截成三段,各围成三个正方形.问:怎样截法,才能使围成的三个正方形面积之和S 最小,并求此最小值.解:设三段绳子的长分别为x ,y ,z ,则x +y +z =12,三个正方形的边长分别为x 4,y4,z4均为正数,三个正方形面积之和:S =⎝ ⎛⎭⎪⎫x 42+⎝ ⎛⎭⎪⎫y 42+⎝ ⎛⎭⎪⎫z 42=116(x 2+y 2+z 2). ∵(12+12+12)(x 2+y 2+z 2)≥(x +y +z )2=122, 即x 2+y 2+z 2≥48.从而S ≥116×48=3. 当且仅当x 1=y 1=z1时取等号,又x +y +z =12, ∴x =y =z =4时,S min =3.故把绳子三等分时,围成的三个正方形面积之和最小,最小面积为3 m 2.1.已知a 2+b 2+c 2+d 2=5,则ab +bc +cd +ad 的最小值为( ) A .5 B .-5 C .25D .-25解析:选B (ab +bc +cd +ad )2≤(a 2+b 2+c 2+d 2)·(b 2+c 2+d 2+a 2)=25,当且仅当a =b =c =d =±52时,等号成立. ∴ab +bc +cd +bd 的最小值为-5.2.已知a 21+a 22+…+a 2n =1,x 21+x 22+…+x 2n =1,则a 1x 1+a 2x 2+…+a n x n 的最大值是( ) A .1 B .2 C .3D .4解析:选A (a 1x 1+a 2x 2+…+a n x n )2≤(a 21+a 22+…+a 2n )·(x 21+x 22+…+x 2n )=1×1=1,当且仅当x 1a 1=x 2a 2=…=x n a n=1时取等号.∴a 1x 1+a 2x 2+…+a n x n 的最大值是1.3.已知x ,y ,z ∈R +,且1x +2y +3z =1,则x +y 2+z3的最小值是( )A .5B .6C .8D .9解析:选 D x +y 2+z 3=1x +2y +3z ·⎝ ⎛⎭⎪⎫x +y 2+z 3≥1x·x +2y·y2+3z·z 32=9,当且仅当1x =2y =3z =13时等号成立.4.设a ,b ,c ,x ,y ,z 是正数,且a 2+b 2+c 2=10,x 2+y 2+z 2=40,ax +by +cz =20,则a +b +cx +y +z=( )A.14B.13C.12D.34解析:选C 由柯西不等式得,(a 2+b 2+c 2)(x 2+y 2+z 2)≥(ax +by +cz )2=400,当且仅当a x =b y =c z =12时取等号,因此有a +b +c x +y +z =12.5.已知2x +3y +z =8,则x 2+y 2+z 2取得最小值时,x ,y ,z 形成的点(x ,y ,z )=________. 解析:由柯西不等式(22+32+12)(x 2+y 2+z 2)≥(2x +3y +z )2,即x 2+y 2+z 2≥327. 当且仅当x 2=y3=z 时等号成立.又2x +3y +z =8, 解得x =87,y =127,z =47,故所求点为⎝ ⎛⎭⎪⎫87,127,47. 答案:⎝ ⎛⎭⎪⎫87,127,47 6.设a ,b ,c 为正数,则(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c 的最小值是________.解析:(a +b +c )⎝ ⎛⎭⎪⎫4a +9b+36c=[(a )2+(b )2+(c )2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫3b 2+⎝ ⎛⎭⎪⎫6c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·3b +c ·6c 2=(2+3+6)2=121.当且仅当a 2=b 3=c6=k (k 为正实数)时,等号成立.答案:1217.已知实数x ,y ,z 满足3x +2y +z =1,则x 2+2y 2+3z 2的最小值为________. 解析:由柯西不等式,得[x 2+(2y )2+(3z )2]·⎣⎢⎡⎦⎥⎤32+(2)2+⎝ ⎛⎭⎪⎫132≥(3x +2y +z )2=1,所以x 2+2y 2+3z 2≥334,当且仅当x 3=2y 2=3z 13,即x =934,y =334,z =134时,等号成立,所以x 2+2y 2+3z 2的最小值为334.答案:3348.在△ABC 中,设其各边长为a ,b ,c ,外接圆半径为R ,求证:(a 2+b 2+c 2)⎝⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C ≥36R 2.证明:∵a sin A =b sin B =csin C =2R ,∴(a 2+b 2+c 2)⎝ ⎛⎭⎪⎫1sin 2A +1sin 2B +1sin 2C≥⎝⎛⎭⎪⎫a sin A +b sin B +c sin C 2=36R 2.9.在直线5x +3y =2上求一点,使(x +2y -1)2+(3x -y +3)2取得最小值. 解:由柯西不等式得(22+12)[(x +2y -1)2+(3x -y +3)2]≥[2(x +2y -1)+(3x -y +3)]2=(5x +3y +1)2=9.∴(x +2y -1)2+(3x -y +3)2≥95.当且仅当x +2y -1=2(3x -y +3) 即5x -4y +7=0时取等号.解方程组⎩⎪⎨⎪⎧5x +3y =2,5x -4y =-7,得⎩⎪⎨⎪⎧x =-1335,y =97.故所求点的坐标为⎝ ⎛⎭⎪⎫-1335,97.10.已知函数f (x )=m -|x -2|,m ∈R ,且f (x +2)≥0的解集为[-1,1]. (1)求m 的值;(2)若a ,b ,c 为正实数,且1a +12b +13c =m ,求证:a +2b +3c ≥9.解:(1)因为f (x +2)=m -|x |, 所以f (x +2)≥0等价于|x |≤m .由|x |≤m 有解,得m ≥0,且其解集为{x |-m ≤x ≤m }, 又f (x +2)≥0的解集为[-1,1],故m =1. (2)证明:由(1)知1a +12b +13c=1,所以a +2b +3c =(a +2b +3c )⎝ ⎛⎭⎪⎫1a +12b +13c ≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.。
一般形式的柯西-施瓦茨不等式教案简介柯西-施瓦茨不等式是线性代数中的一个重要定理,它在解决向量和长度、内积及其性质方面起着关键作用。
本教案将介绍柯西-施瓦茨不等式的一般形式,帮助学生理解这一定理的应用和证明过程。
教学目标通过本课程的研究,学生将能够:1. 理解柯西-施瓦茨不等式的定义和基本性质;2. 掌握柯西-施瓦茨不等式的一般形式;3. 应用柯西-施瓦茨不等式解决向量和长度、内积等问题;4. 理解柯西-施瓦茨不等式的证明过程。
教学内容1. 柯西-施瓦茨不等式的定义和基本性质- 介绍柯西-施瓦茨不等式的概念和意义;- 解释柯西-施瓦茨不等式的基本性质。
2. 柯西-施瓦茨不等式的一般形式- 引入向量的内积概念;- 推导柯西-施瓦茨不等式的一般形式。
3. 柯西-施瓦茨不等式的应用- 解决向量长度的问题;- 解决向量内积的问题;- 解决其他应用问题。
4. 柯西-施瓦茨不等式的证明- 分析柯西-施瓦茨不等式的证明过程;- 讨论柯西-施瓦茨不等式的证明思路和技巧。
教学方法1. 讲授:通过讲解理论和公式,介绍柯西-施瓦茨不等式的定义、性质和推导过程;2. 案例分析:以具体问题为例,引导学生应用柯西-施瓦茨不等式解决实际问题;3. 练:提供一系列练题,让学生巩固和应用所学知识;4. 讨论:引导学生自主讨论和验证柯西-施瓦茨不等式的证明过程。
教学评估1. 口头问答:针对柯西-施瓦茨不等式的定义、性质和应用进行口头问答;2. 练题:布置一些题,检验学生对柯西-施瓦茨不等式的掌握程度;3. 思考题:提出一些思考性问题,鼓励学生思考柯西-施瓦茨不等式的证明过程。
参考资料1. Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 2016.2. 杨??,朱迈达,吴连生. 线性代数学教程. 高等教育出版社, 2010.以上是一份关于一般形式的柯西-施瓦茨不等式的教案,希望对您有所帮助!。
柯西不等式的一般形式
柯西不等式是初等代数不等式的一个重要定理,它是指对于任意实数 $a_1,a_2,dots,a_n$ 和 $b_1,b_2,dots,b_n$,有以下不等式成立:
$$(a_1^2+a_2^2+dots+a_n^2)(b_1^2+b_2^2+dots+b_n^2)geq (a_1b_1+a_2b_2+dots+a_nb_n)^2$$
这个不等式可以用于证明很多数学问题,包括向量内积的性质、几何中的三角形不等式等。
但是,它的限制比较严格,只能适用于实数。
为了扩展柯西不等式的适用范围,人们发现了一般形式的柯西不等式。
它的形式是:
$$|langle x,yrangle|^2leq langle x,xranglecdot langle y,yrangle$$
其中 $langle x,yrangle$ 是内积,表示两个向量之间的乘积,$|cdot|$ 表示绝对值。
这个不等式对于实数和复数都成立,而且可以扩展到更一般的向量空间中。
这个不等式的应用非常广泛,比如在量子力学中有重要的应用,被称为海森堡不确定性原理。
它也可以用于证明一些重要的不等式,比如霍尔德不等式、门捷列夫不等式等。
- 1 -。
课题:§选讲4-5 3.2一般形式的柯西不等式课时: 课时 班级: 姓名:【学习目标】知识与技能:理解一般形式的柯西不等式的几何意义。
过程与方法:会运用一般形式的柯西不等式进行简单的数学应用。
情感态度与价值观:培养学生的逻辑思维能力,感受数学的美妙。
【学习重点】 一般形式的柯西不等式的几何意义。
【学习难点】 灵活运用一般形式的柯西不等式解决简单的数学问题【学法指导】 1.课前依据参考资料,自主完成,有疑问的地方做好标记.2.课前互相讨论交流,课上积极展示学习成果.【知识链接】 二维形式的柯西不等式:_____________________________________ 等号成立的条件:____________________________________________【学习过程】 一、 定理:一般形式的柯西不等式:①二维(平面)形式的柯西不等式:____________________________________等号成立的条件:____________________________________________②三维(立体)形式的柯西不等式:____________________________________ 等号成立的条件:____________________________________________③推广:一般形式的柯西不等式:____________________________________________ 等号成立的条件:____________________________________________二、典例合作探究:问题一 :例1、已知,a b R +∈,且1a b +=,求证:114a b+≥例2、已知,,a b c R +∈,且1a b c ++=,求证: 1119a b c++≥请你总结上述规律,推广到一般形式!问题二:例3、已知21x y +=,求22x y +的最小值。