最新人教版高中数学选修4-5一般形式的柯西不等式1
- 格式:pptx
- 大小:703.73 KB
- 文档页数:16
选修4-5学案 §3.1.3柯西不等式 姓名☆学习目标: 1. 熟悉一般形式的柯西不等式,理解柯西不等式的证明; 2. 会应用柯西不等式解决函数最值、方程、不等式,等一些问题☻知识情景:1. 柯西主要贡献简介:柯西(Cauchy ),法国人,生于1789年,是十九世纪前半叶最杰出的分析家. 他奠定 了数学分析的理论基础. 数学中很多定理都冠以柯西的名字,如柯西收敛原理、柯西中值 定理、柯西积分不等式、柯西判别法、柯西方程等等.2.二维形式的柯西不等式: 若,,,a b c d R ∈,则 .当且仅当 时, 等号成立.变式10. 若,,,a b c d R ∈,则||2222bd ac d c b a ++⋅+或bd ac d c b a ++⋅+2222;变式20. 若,,,a b c d R ∈,则222222()()a b c d a c b d +++-+- ;变式30.(三角形不等式)设332211,,,,,y x y x y x 为任意实数,则:222212122323()()()()x x y y x x y y -+-+-+-≥3. 一般形式的柯西不等式:设n 为大于1的自然数,,i ia b R ∈(=i 1,2,…,n ),则: .当且仅当 时, 等号成立.(若0=i a 时,约定0=i b ,=i 1,2,…,n ).变式10. 设,0(1,2,,),i i a R b i n ∈>= 则:∑∑∑≥=i i ni iib a b a 212)( . 当且仅当 时, 等号成立.变式20. 设0(1,2,,),i i a b i n ⋅>= 则:∑∑∑≥=ii i ni i i b a a b a 21)(. 当且仅当n b b b === 21时,等号成立. 变式30. (积分形式)设)(x f 与)(x g 都在],[b a 可积,则dx x g dx x f dx x g x f ba b a b a )()()()(222⎰⎰⎰⋅≤⎥⎦⎤⎢⎣⎡,当且仅当)()(x g t x f ⋅=时,等号成立.如果一个定理与很多学科或者一个学科的很多分支有着密切联系,那么这个定理肯定很重 要. 而柯西不等式与我们中学数学中的代数恒等式、复数、向量、几何、三角、函数等各方面 都有联系. 所以, 它的重要性是不容置疑的!☆ 柯西不等式的应用:例1. 已知实数,,a b c ,d 满足3a b c d +++=, 22222365a b c d +++=. 试求a 的最值例2 在实数集内 解方程22294862439x y z x y y ⎧++=⎪⎨⎪-+-=⎩例3 设P 是三角形ABC 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC 外接圆的半径, 证明22212x y z a b c R ++≤++例4 (证明恒等式) 已知,11122=-+-a b b a 求证:122=+b a 。
二 一般形式的柯西不等式知识梳理1.三维形式的柯西不等式设a 1,a 2,a 3,b 1,b 2,b 3是实数,则(a 12+a 22+a 32)(b 12+b 22+b 32)≥__________,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2,3)时等号成立. 2.一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3, …,b n 是实数,则(a 12+a 22+…+a n 2)(b 12+b 22+…+b n 2)≥_______,当且仅当_______或存在一个数k ,使得a i =kb i (i=1,2, …,n)时,等号成立. 知识导学由二维形式的柯西不等式到一般形式的柯西不等式,是从特殊到一般的认识过程,其中三维形式的柯西不等式是过渡的桥梁,三维形式的柯西不等式可以对比二维形式的柯西不等式来理解和记忆,一般形式的柯西不等式又可以参照三维形式的柯西不等式来理解和推广.这样易于记忆不等式的结构与特征.对不等式成立的条件及等号取到的条件更要对比来研究. 一般形式的柯西不等式注意整体的结构特征,因此,要从整体结构上认识这个不等式,形成一定的思维理解模式,在应用其解决问题时才能灵活应用. 疑难突破1.一般形式的柯西不等式的应用我们主要利用柯西不等式来证明一些不等式或求值等一些问题,但往往不能直接应用,需要对数学式子的形式进行变化,拼凑出与一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我们应用一般形式的柯西不等式的关键,也是难点.我们要注意在数学式子中,数或字母的顺序要对比柯西不等式中的数或字母的顺序,以便能使其形式一致起来,然后应用解题. 2.“1”的利用数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应该有的结构形式外,对数字、系数的处理往往起到某些用字母所代表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而不会用柯西不等式,教材例1中数字“1”的利用说明了处理问题与变形中的灵活性,因此,不应对“1”视而不见. 典题精讲【例1】 已知a,b,c ∈R +,求证:(b a +c b +a c )(a b +b c +ca )≥9. 思路分析:对应三维形式的柯西不等式,a 1=b a ,a 2=c b ,a 3=a c ,b 1=a b ,b 2=b c ,b 3=ca ,而a 1b 1=a 2b 2=a 3b 3=1,因而得证. 证明:由柯西不等式,知左边=[(b a )2+(c b )2+(a c )2]×[(a b )2+(b c )2+(ca )2] ≥(a b ×b a +c b ×b c )+a c ×ca )2=(1+1+1)2=9. ∴原不等式成立.绿色通道:由a,b,c 构成新的数字,而形成三维形式的柯西不等式,需要有较高的观察能力,从所给的数学式的结构中看出来.【变式训练】 已知a,b,c ∈R +,且a+b+c=1,求证:cb a 111++≥9. 思路分析:利用“1”的代换来构造柯西不等式. 证法一:c b a 111++=(a+b+c)(cb a 111++) =[(a )2+(b )2+(c )2]×[(a 1)2+(b 1)2+(c1)2] ≥(a ×a 1+b ×b 1+c ×c1)2=(1+1+1)2=9. 证法二:a 1+b 1+c 1=(a+b+c)(a 1+b 1+c 1) =1+b a +c a +a b +1+c b +a c +bc +1=3+(b a +c a +c b +a c +b c +ab)≥3+66a b b c a c c b c a b a ⨯⨯⨯⨯⨯=3+6=9.【例2】 已知a 1,a 2, …,a n 都是正实数,且a 1+a 2+…+a n =1.求证:1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 思路分析:已知条件中a 1+a 2+…+a n =1,可以看作“1”的代换,而要证的不等式的左侧,“数式”已经可以看出来,为,,322211a a a a a a ++, …,所以a 1+a 2+…+a n =1.应扩大2倍后再利用,本题还可以利用其他的方法证明.证法一:根据柯西不等式,得左边=1212132222121a a a a a a a a a a a a n n n n n ++++++++-- =[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+ …+(a n-1+a n )+(a n +a 1)]× [(211a a a +)2+(322a a a +)2+(433a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21=[(21a a +)2+(32a a +)2+…+(nn a a +-1)2+(1a a n +)2]×[(211a a a +)2+(322a a a +)2+…+(n n n a a a +--11)2+(1a a a n n +)2]×21≥[(21a a +×211a a a +)+(32a a +×322a a a +)+…+(n n a a +-1×n n n a a a +--11)+(1a a n +×1a a a n n +)]2×21=(a 1+a 2+…+a n )2×21=21=右边.∴原不等式成立.证法二:∵a ∈R +,则a+a1≥2, a≥2-a1. 利用上面的结论,知4)22(22221121121112121a a a a a a a a a a a a a +-=+-≥+⨯=+ 同理,有43223222a a a a a a +-≥+,…411121n n n n n n a a a a a a +-≥+----,4121a a a a a a nn n n n +-≥+-. 以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n )=21. 证法三:对于不等式左边的第一个分式2121a a a +,配制辅助式k(a 1+a 2),k 为待定的正数,这里取k=41,则412121++a a a (a 1+a 2)≥)(412212121a a a a a +⨯+=a 1. 同理,413222++a a a (a 2+a 3)≥a 2.……41121++--n n n a a a (a n-1+a n )≥a n-1,4112++a a a n n (a n +a 1)≥a n .以上式子相加整理,得1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21(a 1+a 2+…+a n ). ∵a 1+a 2+…+a n =1,∴1212132222121a a a a a a a a a a a a n n n n n ++++++++-- ≥21. 绿色通道:通过以上不同的证明方法可以看出,无论用柯西不等式或其他重要不等式来证明,构造出所需要的某种结构是证题的难点,因此,对柯西不等式或其他重要不等式,要熟记公式的特点,能灵活变形,才能灵活应用.【变式训练】 设x 1,x 2,x 3, …,x n 都是正实数,且x 1+x 2+x 3+…+x n =S.求证:12222121-≥-++-+-n Sx S x x S x x S x n n . 思路分析:对比例2及本题要证明的不等式,知需要构造出S-x 1+S-x 2+…+S-x n .证法一:根据柯西不等式,得左边=nn x S x x S x x S x -++-+-2222121=[(S-x 1)+(S-x 2)+ …+(S-x n )]×S n x S x x S x x S x S n n n )1(1][)1(12222121-=-++-+-- nn n x S x x S x x S x x S x S x S -++-+-⨯-++-+- 221122221][])()()[(≥2222111)]()()[()1(1nn n x S x x S x S x x S x S x x S S n -⨯-++-⨯-+-⨯--=S n )1(1-(x 1+x 2+…+x n )2=S n )1(1-×S 2=1-n S=右边.∴原不等式成立. 证法二:∵a ∈R +,则a+a1≥2. ∴a≥2-a1. ∴22)1(12])1(2[1)1(1----=---⨯-≥--⨯-=-n x S n x x n x S n x x S x n n x x S x i i i i i i i i i . n 个式子相加,有])1()1()1([12121222221212222121--++--+----++-+-≥-++-+-n x S n x S n x S n x n x n x x S x x S x x S x n n n n=1)1(122-=----n Sn S nS n S .∴原不等式成立. 证法三:22)1(1-+-n x S x i i (S-x i )≥ 12)()1(1222-=--•-n x x S n x S x i i i i . ∴22)1()1(2----≥-n x S n x x S x i i i i , ∴1)1()1(12)1(12212112-=----=----≥-∑∑∑===n S n S n n S n x S n x x S x ni i n i i ni ii . ∴原不等式成立. 问题探究问题:全班同学的体重与年龄有某种关系,如果让每人的体重都去乘所有人的年龄,再求其和,就可以比较得出各班之间体重间的一些问题,问这种值最小是多少? 导思:设其人数及年龄,利用柯西不等式解答.探究:设全班为60人,年龄设为x 1,x 2, …,x 60,对应的体重为y 1,y 2,…,y 60.则 (x 1+x 2+…+x 60)(y 1+y 2+…+y 60) ≥(60602211y x y x y x +++)2.∴最小值是(60602211y x y x y x +++ )2.。
数学人教B 选修4-5第二章2.1.2 柯西不等式的一般形式及其参数配方法的证明1.认识一般形式的柯西不等式.2.理解一般形式的柯西不等式的几何意义.3.会用一般形式的柯西不等式求解一些简单问题.定理(柯西不等式的一般形式)(1)设a 1,a 2,…,a n ,b 1,b 2,…,b n 为实数,则11222222221212(+)(+)n n a a a b b b ++++ ≥____________________,其中等号成立____________________(当某b j =0时,认为a j =0,j =1,2,…,n ). (2)柯西不等式的一般形式的证明方法是__________.记忆柯西不等式的一般形式,一是抓住其结构特点:左边是平方和再开方的积,右边是积的和的绝对值;二是与二维形式的柯西不等式类比记忆.柯西不等式的变形和推广:变形(1) 设a i ,b i ∈R ,b i >0(i =1,2,…,n ),则∑i =1na i 2b i≥(∑i =1na i )2∑i =1n b i,当且仅当a i =λb i (i =1,2,…,n )时,等号成立.变形(2) 设a i ,b i (i =1,2,…,n )同号且不为零,则∑i =1na ib i≥(∑i =1na i )2∑i =1na ib i,当且仅当b 1=b 2=…=b n 时,等号成立.【做一做1】已知a ,b ,c ∈(0,+∞),且a +b +c =1,则a 2+b 2+c 2的最小值为( ) A .1 B .4C .13D .12【做一做2】若22212+=1n a a a ++ ,22212+=4n b b b ++ ,则a 1b 1+a 2b 2+…+a n b n的最大值为( )A .1B .-1C .2D .-2 答案:(1)|a 1b 1+a 2b 2+…+a n b n |a 1b 1=a 2b 2=…=a n b n(2)参数配方法【做一做1】C 由柯西不等式,知(a 2+b 2+c 2)(12+12+12)≥(a ×1+b ×1+c ×1)2,又a +b +c =1,∴a 2+b 2+c 2≥13,当且仅当a =b =c =13时等号成立.【做一做2】C 由柯西不等式,得2222221212()()n n a a a b b b ++++++≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当a 1b 1=a 2b 2=…=a nb n时,等号成立.∴(a 1b 1+a 2b 2+…+a n b n )2≤4. ∴-2≤a 1b 1+…+a n b n ≤2. ∴所求的最大值为2.1.一般形式的柯西不等式如何应用? 剖析:我们主要利用柯西不等式来证明一些不等式或求值等问题,但往往不能直接应用,需要对数学式子的形式进行变化,拼凑出与一般形式的柯西不等式相似的结构,才能应用,因而适当变形是我们应用一般形式的柯西不等式的关键,也是难点.我们要注意在数学式子中,数或字母的顺序要对比柯西不等式中的数或字母的顺序,以便能使其形式一致,然后应用解题.2.如何利用“1”?剖析:数字“1”的利用非常重要,为了利用柯西不等式,除了拼凑应该有的结构形式外,对数字、系数的处理往往起到某些用字母所代表的数或式子所不能起的作用.这要求在理论上认识柯西不等式与实际应用时二者达到一种默契,即不因为“形式”与“面貌”的影响而不会用柯西不等式.题型一 利用柯西不等式证明不等式【例题1】已知a 1,a 2,…,a n 都是正实数,且a 1+a 2+…+a n =1.求证:222212112231112n n n n n a a a a a a a a a a a a --++++≥++++ .分析:已知条件中a 1+a 2+…+a n =1,可以看作“1”的代换,而要证的不等式的左侧,“数式”已经可以看出来,为a 1a 1+a 2,a 2a 2+a 3,…,所以a 1+a 2+…+a n =1应扩大2倍后再利用,本题还可以利用其他的方法证明.反思:通过以上不同的证明方法可以看出,构造出所需要的某种结构是证题的难点,因此,对柯西不等式或其他重要不等式,要熟记公式的特点,能灵活变形,才能灵活应用.题型二 利用柯西不等式求函数的最值【例题2】设2x +3y +5z =29,求函数u =2x +1+3y +4+5z +6的最大值. 分析:将已知等式变形,直接应用柯西不等式求解. 反思:要求ax +by +z 的最大值,利用柯西不等式(ax +by +z )2≤(a 2+b 2+12)(x 2+y 2+z 2)的形式,再结合已知条件进行配凑,是常见的变形技巧.题型三 易错辨析易错点:应用柯西不等式时,因忽略等号成立的条件而致误.【例题3】已知x ∈[2,3],求f (x )=1+x +1x的最小值.错解:∵x >0,∴⎝⎛⎭⎫1+x +1x ⎝⎛⎭⎫1+1x +x =⎣⎡⎦⎤12+(x )2+⎝⎛⎭⎫1x 2⎣⎡⎦⎤12+⎝⎛⎭⎫1x 2+(x )2≥⎣⎡1×1+x ×1x +⎦⎤x ×1x 2=9,∴1+x +1x ≥3.∴f (x )的最小值为3.错因分析:上题在求解时,由于等号不成立,故求解过程错误,结果也不正确. 答案:【例题1】证明:证法一:根据柯西不等式,得左边=2222121122311n n n n n a a a a a a a a a a a a --++++++++ =[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )+(a n +a 1)]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+⎝ ⎛⎭⎪⎫a 3a 3+a 42+…+⎦⎥⎤⎝ ⎛⎭⎪⎫a n -1a n -1+a n 2+⎝ ⎛⎭⎪⎫a n a n +a 12×12=[(a 1+a 2)2+(a 2+a 3)2+…+(a n -1+a n)2+(a n +a 1)2]×⎣⎢⎡⎝ ⎛⎭⎪⎫a 1a 1+a 22+⎝ ⎛⎭⎪⎫a 2a 2+a 32+…+⎝ ⎛⎭⎪⎫a n -1a n -1+a n 2+⎦⎥⎤⎝ ⎛⎭⎪⎫a n a n +a 12×12≥⎣⎢⎡⎝⎛⎭⎪⎫a 1+a 2×a 1a 1+a 2+⎝ ⎛⎭⎪⎫a 2+a 3×a 2a 2+a 3+…+⎝⎛⎭⎪⎫a n -1+a n ×a n -1a n -1+a n +⎦⎥⎤⎝ ⎛⎭⎪⎫a n +a 1×a n a n +a 12×12=(a 1+a 2+…+a n )2×12=12=右边.∴原不等式成立.证法二:∵a ∈(0,+∞),∴a +1a ≥2,∴a ≥2-1a.利用上面的结论,知2112a a a +=a 12×2a 1a 1+a 2≥a 12⎝⎛⎭⎫2-a 1+a 22a 1=a 1-a 1+a 24. 同理,有2223a a a +≥a 2-a 2+a 34,…211n n na a a --+≥a n -1-a n -1+a n 4,21n n a a a +≥a n -a n +a 14.以上式子相加整理,得2222112122311n n n n n a a a a a a a a a a a a --++++++++ ≥12(a 1+a 2+…+a n )=12. ∴原不等式成立.证法三:对于不等式左边的第一个分式2112a a a +,配制辅助式k (a 1+a 2),k 为待定的正数,这里取k =14,则2112a a a ++14(a 1+a 2)≥a 1. 同理,2223a a a ++14(a 2+a 3)≥a 2.…211n n n a a a --++14(a n -1+a n )≥a n -1,21n n a a a ++14(a n +a 1)≥a n .以上式子相加整理,得2222121122311n n n n n a a a a a a a a a a a a --++++++++ ≥12(a 1+a 2+…+a n ). ∵a 1+a 2+…+a n =1,∴2222121122311n n n n n a a a a a a a a a a a a --++++++++ ≥12. 【例题2】解:根据柯西不等式,得 120=3[(2x +1)+(3y +4)+(5z +6)]≥(1×2x +1+1×3y +4+1×5z +6)2, 故2x +1+3y +4+5z +6≤230, 即u ≤230.当且仅当2x +1=3y +4=5z +6,即x =376,y =289,z =2215时等号成立,此时,u max =230.【例题3】正解:应用函数单调性的定义(或导数)可证得f (x )在[2,3]上为增函数,故f (x )min=f (2)=1+2+12=72.1若a ,b ,c ∈(0,+∞),则⎝⎛⎭⎫a b +b c +c a ·⎝⎛⎭⎫b a +c b +a c 的最小值为( )A .1B .-1C .3D .92设a 1,a 2,…,a n 为正实数,P =a 1+a 2+…+a n n ,Q =n1a 1+1a 2+…+1a n,则P ,Q 间的大小关系为( )A .P >QB .P ≥QC .P <QD .P ≤Q3已知a +b +c =1,且a ,b ∈(0,+∞),则2a +b +2b +c +2c +a的最小值为( )A .1B .3C .6D .94设a ,b ,c ,d 均为正实数,P =(a +b +c +d )·⎝⎛⎭⎫1a +1b +1c +1d ,则P 的最小值为__________.5已知x +4y +9z =1,则x 2+y 2+z 2的最小值为__________. 答案:1.D 原式=⎣⎡⎦⎤⎝⎛⎭⎫a b 2+⎝⎛⎭⎫b c 2+⎝⎛⎭⎫c a 2·⎣⎡⎦⎤⎝⎛⎭⎫b a 2+⎝⎛⎭⎫c b 2+⎝⎛⎭⎫a c 2 ≥⎣⎡⎝⎛⎭⎫ab ×b a +⎝⎛⎭⎫b c ×c b +⎦⎤⎝⎛⎭⎫c a ×a c 2=9, 当且仅当a =b =c >0时等号成立. 2.B3.D ∵a +b +c =1,∴2a +b +2b +c +2c +a=2(a +b +c )·⎝⎛⎭⎫1a +b +1b +c +1c +a =[(a +b )+(b +c )+(c +a )]·⎝⎛⎭⎫1a +b +1b +c +1c +a ≥(1+1+1)2=9, 当且仅当a =b =c =13时等号成立.4.165.198(x 2+y 2+z 2)(12+42+92)≥(x +4y +9z )2=1, ∴x 2+y 2+z 2≥198,当且仅当x 1=y 4=z9,即x =198,y =249,z =998时等号成立.1n 个正数的和与这n 个正数的倒数和的乘积的最小值是( ) A .1 B .n C .n 2 D .1n答案:C 设n 个正数为x 1,x 2,…,x n , 由柯西不等式,得 (x 1+x 2+…+x n )12111n x x x ⎛⎫+++⎪⎝⎭≥2⎫+++ =(1+1+…+1)2=n 2,当且仅当x 1=x 2=…=x n >0时等号成立.2若实数x +y +z =1,则F =2x 2+y 2+3z 2的最小值为( ) A .1 B .6 C .11 D .1611答案:D ∵(2x 2+y 2+3z 2)11123⎛⎫++⎪⎝⎭≥21y ⨯=(x +y +z )2=1, 当且仅当3=11x ,6=11y ,2=11z 时等号成立.∴2x 2+y 2+3z 2≥1116=611.3设m ,n ,p ∈(0,+∞),且m 2+n 2-p 2=0,则pm n+的最小值为( )A .0B .3C .1D .2答案:D ∵m ,n ,p ∈(0,+∞),m 2+n 2-p 2=0, ∴2p 2=2(m 2+n 2)=(12+12)(m 2+n 2)≥(m +n )2, 当且仅当m =n 时等号成立.∴221()2p m n ≥+.∴2p m n ≥+. 4已知实数x ,y ,z 满足x +2y +z =1,则x 2+4y 2+z 2的最小值为__________.答案:13(x 2+4y 2+z 2)(12+12+12)≥(x +2y +z )2=1, ∴x 2+4y 2+z 2≥13.当且仅当x =2y =z =13,即1=3x ,1=6y ,1=3z 时等号成立.5已知(x -3)2+(y -3)2=6,则yx 的最大值为__________.答案:设=yk x(k ≠0),则kx -y =0,∴[(x -3)2+(y -3)2][k 2+(-1)2] ≥[k (x -3)-(y -3)]2=(3-3k )2. 当且仅当331x y k --=-时等号成立, ∴6(k 2+1)≥(3-3k )2,解得3-k ≤∴max k =yx的最大值为6求实数x ,y 的值,使得(y -1)2+(x +y -3)2+(2x +y -6)2取到最小值. 答案:解:由柯西不等式,得(12+22+12)×[(y -1)2+(3-x -y )2+(2x +y -6)2] ≥[1×(y -1)+2×(3-x -y )+1×(2x +y -6)]2=1,即(y -1)2+(x +y -3)2+(2x +y -6)2≥16, 当且仅当1326121y x y x y ---+-==,即 5=2x ,5=6y 时,上式取等号. 故5=2x ,5=6y 时,(y -1)2+(x +y -3)2+(2x +y -6)2取到最小值.7设a ,b ,c 为正数,且a +b +c =1,求证:2221111003a b c a b c ⎛⎫⎛⎫⎛⎫+++++≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.答案:证明:222111a b c a b c ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=13(12+12+12)·222111a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫+++++⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦≥211111113a b c a b c ⎡⎤⎛⎫⎛⎫⎛⎫⨯⨯++⨯++⨯+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ =2111113a b c ⎡⎤⎛⎫+++ ⎪⎢⎥⎝⎭⎣⎦=211111()3a b c a b c ⎡⎤⎛⎫+++++ ⎪⎢⎥⎝⎭⎣⎦≥22113⎡⎤++⎢⎥⎢⎥⎣⎦ =21100(1+9)33=, ∴原不等式成立.8如图所示,等腰直角△AOB 的直角边长1,在这个三角形内任取一点P ,过P 分别引三边的平行线,与各边围成以P 为顶点的三个三角形.求这三个三角形面积和的最小值,以及取得最小值时点P 的位置.答案:解:分别以OA ,OB 所在直线为x ,y 轴建立平面直角坐标系,则AB 所在直线的方程为x +y =1,设点P 的坐标为(x ,y ),以点P 为顶点的三个三角形的面积和为S ,则S =12x 2+12y 2+12(1-x -y )2. 由于x +y +(1-x -y )=1(定值),故当且仅当x =y =1-x -y , 即x =y =13时,x 2+y 2+(1-x -y )2有最小值13,从而面积S 有最小值16,此时点P 恰为△AOB 的重心.9设()12(1)lg x x x xn a n f x n+++-+⋅ =,若0≤a ≤1,n ∈N *,且n ≥2,求证:f (2x )≥2f (x ).答案:证明:∵f (2x )=222212(1)lg x x x xn a n n+++-+⋅ ,∴要证f (2x )≥2f (x ),只要证222212(1)lg x x x xn a n n+++-+⋅≥212(1)2lg x x x n a n n+++-+⋅ ,即证222212(1)x x x xn a n n +++-+⋅≥212(1)x x x x n a n n ⎡⎤+++-+⋅⎢⎥⎣⎦,也即证n [12x +22x +…+(n -1)2x +a ·n 2x ]≥[1x +2x +…+(n -1)x +a ·n x ]2.(*)∵0≤a ≤1,∴a ≥a 2,根据柯西不等式,得 n [12x +22x +…+(n -1)2x +a ·n 2x ]≥222(1+11)n ++个{(1x )2+(2x )2+…+[(n -1)x ]2+(a ·n x )2}≥[1x +2x +…+(n -1)x +a ·n x ]2,即(*)式显然成立,故原不等式成立.。
庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +∙+≥|a 1b 1+a 2b 2|; 22212221b b a a +∙+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2). 定理3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni i ni in i i i b a b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=n n b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=i i ni iib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n). 变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是: (1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1; (2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b ∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c ∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++ >0. 思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是 [(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a )≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a )>1, ∴11132211111++->-++-+-n n n a a a a a a a a , 故11132211111a a a a a a a a n n n -+-++-+-++ >0. 方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++ )·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2] ≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++ ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b +c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2. 由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x bx a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2. 当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xbx a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(xb xb x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=xb x a cos sin +≥(a 32+b 32)32.于是y=xb x a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn 2222121+++≤+++ . 探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以n a a a n 221)(+++ ≤a 12+a 22+…+a n 2,故na a a na a a nn2222121+++≤+++ .不等式na a a n a a a nn 2222121+++≤+++ ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a 21≤na a a n a a a nn 2222121+++≤+++ ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a 、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b ∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a-c=(a-b)+(b-c),a>c,∴a-c>0,∴结论改为(a-c)(cb b a -+-11)≥4.人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c ∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b ++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可.探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。