扇形、条形、折线3种统计图
- 格式:doc
- 大小:16.00 KB
- 文档页数:2
第33讲常见的统计图考纲要求命题趋势熟悉几种常见统计图表的应扇形、条形、折线统计图以及频数分布直方图是中考考查的重点.借助这些统计图获取信息,然后再应用到具体问题中是中考常考查的热点.试题由仅考查知识变为整理、分析和处理数据,由单一填空题、选择题变为综合性的应用题.知识梳理一、几种常见的统计图1.条形统计图用长方形的高来表示数据的图形.(2)易于比较各组数据之间的差别.它的特点:(1)能够显示每组中的具体数据;2.折线统计图用几条线段连成的折线来表示数据的图形.它的特点:易于显示数据的变化趋势.3.扇形统计图(1)用一个圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分在总体中所占百分比的大小,这样的统计图叫做扇形统计图;(2)百分比的意义:在扇形统计图中,每部分占总体的百分比等于该部分所对扇形的圆心角的度数与360°的比;(3)扇形的圆心角=360°×该部分占总体的百分比.二、频数分布直方图1.数据中每个对象出现的次数叫做频数,每个对象出现的次数与总次数的比(或百分比)叫做频率,即频率=频数数据总数.2.与频数、频率相关的公式(1)频数=频率×总数;(2)各组频数之和等于总数;(3)各组频率之和等于1.考点一统计图表的简单应用例1 (2016·泰安)某学校将为初一学生开设ABCDEF共6门选修课,现选取若干学生进行了“我最喜欢的一门选修课”调查,将调查结果绘制成如图统计图表(不完整).根据图表提供的信息,下列结论错误的是()A.这次被调查的学生人数为400人B.扇形统计图中E部分扇形的圆心角为72°C.被调查的学生中喜欢选修课E,F的人数分别为80,70D.喜欢选修课C的人数最少【点拨】本题考查了条形统计图、扇形统计图的内容.考点二频数分布直方图的应用例2 (2016·泰州)某校为更好地开展“传统文化进校园”活动,随机抽查了部分学生,了解他们最喜爱的传统文化项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.最喜爱的传统文化项目类型频数分布表根据以上信息完成下列问题:(1)直接写出频数分布表中a 的值; (2)补全频数分布直方图;(3)若全校共有学生1 500名,估计该校最喜爱围棋的学生大约有多少人?【点拨】本题考查了频数分布表、频数分布直方图、用样本估计总体和概率计算的有关知识考点三 统计的综合应用例3 (2016·济南)随着教育信息化的发展,学生的学习方式日益增多,教师为了指导学生有效利用网络进行学习,对学生进行了随机问卷调查(问卷调查表如图所示),并用调查结果绘制了图1、图2两幅统计图(均不完整),请根据统计图解答以下问题: (1)本次接受问卷调查的学生共有 人,在扇形统计图中“D”选项所占的百分比为 ;(2)扇形统计图中,“B ”选项所对应扇形圆心角为 度; (3)请补全条形统计图;(4)若该校共有1 200名学生,请您估计该校学生课外利用网络学习的时间在“A”选项的有多少人?【点拨】本题考查了条形统计图、扇形统计图以及用样本估计总体的思想.图1图2一、选择题1.(2016·安徽)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A 、B 、C 、D 、E 五组进行统计,并制作了如图所示的扇形统计图.已知除B 组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有( ) A .18户 B .20户 C .22户 D .24户【解析】根据题意,参与调查的户数为6410%+35%+30%+5%=80(户),其中B 组用户数占被调查户数的百分比为1-10%-35%-30%-5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有80×(10%+20%)=24(户).故选D . 【答案】D2.(2016·滨州)某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数、中位数分别是( )A.15.5,15.5 B.15.5,15C.15,15.5 D.15,15【解析】根据图中信息可知这些队员年龄的平均数为13×2+14×6+15×8+16×3+17×2+18×12+6+8+3+2+1=15(岁),该足球队共有队员2+6+8+3+2+1=22(人),则第11名和第12名的平均年龄即为年龄的中位数,故中位数为15岁.故选D.【答案】D3.(2016·北京)在1~7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份B.4月份C.5月份D.6月份【解析】各月每斤利润为3月:7.5-4.5=3(元),4月:6-2.5=3.5(元),5月:4.5-2= 2.5(元),6月:3-1.5=1.5(元),所以4月利润最大.故选B .【答案】B4.某学校教研组对八年级360名学生就“分组合作学习”方式的支持程度进行了调查,随机抽取了若干名学生进行调查,并制作统计图,据此统计图估计该校八年级支持“分组合作学习”方式的学生为(含非常喜欢和喜欢两种情况)( B )A .216人B .252人C .288人D .324人5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15 min 的频率为( ) A .0.1 B .0.4 C .0.5 D .0.9【解析】样本容量为20+16+9+5=50,而通话时间不超过15 min 的频数和为45,所以通话时间不超过15 min 的频率为0.9.故选D.【答案】D6.如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是()A.该学校教职工总人数是50人B.年龄在40≤x<42小组的教职工人数占该学校总人数的20% C.教职工年龄的中位数一定落在40≤x<42这一组D.教职工年龄的众数一定在38≤x<40这一组【解析】由直方图可知,各个小组的人数分别是4,6,11,10,9,6,4,共有50人,故A正确;年龄在40≤x<42小组的教职工人数为10人,占总人数的百分比为1050×100%=20%,故B正确;总人数为50人,则第25和第26个数据的平均数为中位数,观察直方图可知应落在40≤x<42这一组,故C正确;虽然38≤x<40这一组人数最多,但具体岁数不知道,故众数不一定在这一组,故D错误.故选D.【答案】D。
10.1(4)--用统计图描述数据(条形图、折线图、扇形图)一.【知识要点】1.用统计图描述数据(条形图、折线图、扇形图)二.【经典例题】1.为了让学生了解南海,关注南海,某校1500名学生参加了南海有关知识竞赛,成绩记为A、B、C、D四等,从中随机抽取了部分学生成绩进行统计,绘制成如图两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人2.某小区12月1日~5日每天用水量变化情况如图,该小区这5天一共用水立方米.三.【题库】【A】1.反映某种股票的涨跌情况,应选择( )A.条形统计图B.折线统计图C.扇形统计图D.直方图2.某学校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果见图.根据此条形图估计这一天该校学生平均课外阅读时为( )A 0.96时B 1.07时C 1.15时D 1.50时【B】1.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.扇形统计图中“自驾”所对应的扇形的圆心角是120°D.样本中选择公共交通出行的有2500人2.高尔基说:“书,是人类进步的阶梯”.阅读可以丰富知识,拓展视野,充实生活,给我们带来愉快.英才中学计划在各班设立图书角,为合理搭配各类书籍,学校团委以“我最喜爱的书籍”为主题,对全校学生进行抽样调查,收集整理喜爱的书籍类型(A.科普,B.文学,C.体育,D.其他)数据后,绘制出两幅不完整的统计图,则下列说法错误的是()A.样本容量为400B.类型D所对应的扇形的圆心角为36°C.类型C所占百分比为30%D.类型B的人数为120人3.相关部门对“五一”期间到某景点观光的游客的出行方式进行了随机抽样调查,整理绘制了两幅尚不完整的统计图,根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.样本中选择公共交通出行的约有2500人D.若“五一”期间到该景点观光的游客有50万人,则选择自驾方式出行的有25万人4.五一期间,某地相关部门对观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形统计图中的m为10%C.若五一期间观光的游客有50万人,则选择自驾方式出行的大约有20万人D.样本中选择公共交通出行的有2400人5.春节期间,全国大量游客都选择到云南景区旅游,某旅行社为了整合资源,在网络上进行“春节期间旅行意向问卷调查”,最后从大量问卷调查表中随机抽取部分问卷,将所得数据整理并绘制成如下两幅不完整的统计图.下列说法错误的是()A.样本容量是500B.扇形统计图中“大理”所占圆心角是90°C.条形统计图中选择到“丽江”的旅游人数是155人D.如果春节期间选择到云南景区旅游的总游客人数大约是100万,那么选择到西双版纳的游客人数约为16万6.为了树立文明乡风,推进社会主义新农村建设,某村决定组建村民文体团队现围绕最喜欢的文体活动项目(每人仅限一项)”,在全村范围内随机抽取部分村民进行问卷调查,并将调查结果绘制成两幅不完整的统计图如图:下列说法中错误的是()A.这个问题中,样本是抽查的20名村民最喜欢的文体活动项目B.在随机抽取的部分村民中,有8名村民选择喜欢广场舞C.在扇形统计图中,表示舞龙部分所占的圆心角是108°D.500名村民中,估计最喜欢花鼓戏的约有50人7.在新型冠状病毒疫情期间,为阻断疫情向校园蔓延,确保师生生命安全和身体健康,全区坚持做到“停课不停学、学习不延期”,帮助学生制定科学的生活指南和学习指南,通过钉钉、微信、电子教材、在线课堂、网上批阅和答疑等现代信息技术手段帮助、指导学生在家有效复习和预习,确保学习成效.为最大限度地减轻延期开学对学生学业的影响,研究高效的在线课堂,某校数学教研组从全校1500名学生中随机抽取了部分学生对试行的某一课堂进行了“在线课堂学习效果”调查研究,把学习效果分成“优、良、中、差”四个等级,并进行统计,绘制了如图所示的两幅统计图,下列四个选项中错误的是()A.抽取的样本容量为30B.α=84°C.得到“良”和“中”的总人数占抽取人数的百分比为60%D.全校得到“差”的人数估计有300人8.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人9.为积极响应北京市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A、B、C、D四等.从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确的是()A.样本容量是200B.样本中C等所占百分比是10%C.D等所在扇形的圆心角为15°D.估计全校学生成绩为A等大约有900人【C】1.某市今年12月份1日至10日最低气温随日期变化的折线统计图如图所示,那么该市这10天最低气温在0℃以上(不含0℃)的天数有天.2.我市2022年12月份某一周的气温折线统计图如图所示,则这七天中温差最大的一天的最高气温与最低气温相差摄氏度.3.如图表示世界人口变化情况折线统计图,世界人口从40亿增加到60亿共花了年.4.某校开展了“科技托起强国梦”征文活动,该校对7年级六个班上交征文的篇数进行了统计,绘制了如图所示的折线统计图,则1班上交征文篇数占7年级六个班上交征文篇数的百分比为.5.某住宅小区5月1日~5月5日每天用水量变化情况如图所示,则2日到3日的每天用水量的增长率为.6.如图为某市2018~2022年私人汽车年增长率折线统计图,年比上年的年增长率的环比变化(增加或降低)值最大.【D】。
扇形、条形、折线3种统计图。
扇形统计图的特点是能清楚的表示出部分量与总量的百分比。
条形统计图特点是可以清楚的看出各部分量的多少。
折线统计图特点是不但可以看出各部分量的多少,而且可以看出各部分量的增减变化情况。
可以让学生了解饼形统计图等。
统计图表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等。
[ 详细]统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。
它具有直观、形象、生动、具体等特点。
统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。
因此,统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。
在解答资料分析测验中有关统计图的试题时,既要考察图的直观形象,又要注意核对数据,不要被表面形象所迷惑。
统计图一般由图形、图号、图目、图注等组成。
在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
一、条形统计图用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。
条形统计图可以清楚地表明各种数量的多少。
条形图是统计图资料分析中最常用的图形。
扇形、条形、折线3种统计图。
扇形统计图的特点是能清楚的表示出部分量与总量的百分比。
条形统计图特点是可以清楚的看出各部分量的多少。
折线统计图特点是不但可以看出各部分量的多少,而且可以看出各部分量的增减变化情况。
可以让学生了解饼形统计图等。
统计图
表现统计数字大小和变动的各种图形总称。
其中有条形统计图、扇形统计图、折线统计图、象形图等。
在统计学中把利用统计图形表现统计资料的方法叫做统计图示法。
其特点是:形象具体、简明生动、通俗易懂、一目了然。
其主要用途有:表示现象间的对比关系;揭露总体结构;检查计划的执行情况;揭示现象间的依存关系,反映总体单位的分配情况;说明现象在空间上的分布情况。
一般采用直角坐标系.横坐标用来表示事物的组别或自变量x,纵坐标常用来表示事物出现的次数或因变量y;或采用角度坐标(如圆形图)、地理坐标(如地形图)等。
按图尺的数字性质分类,有实数图、累积数图、百分数图、对数图、指数图等;其结构包括图名、图目(图中的标题)、图尺(坐标单位)、各种图线(基线、轮廓线、指导线等)、图注(图例说明、资料来源等)等。
[ 详细]
统计图是根据统计数字,用几何图形、事物形象和地图等绘制的各种图形。
它具有直观、形象、生动、具体等特点。
统计图可以使复杂的统计数字简单化、通俗化、形象化,使人一目了然,便于理解和比较。
因此,统计图在统计资料整理与分析中占有重要地位,并得到广泛应用。
在解答资料分析测验中有关统计图的试题时,既要考察图的直观形象,又要注意核对数据,不要被表面形象所迷惑。
统计图一般由图形、图号、图目、图注等组成。
在行政职业能力测验中常见的有条形统计图、扇型统计图、折线统计图和网状统计图。
一、条形统计图
用一个单位长度(如1厘米)表示一定的数量,根据数量的多少,画成长短相应成比例的直条,并按一定顺序排列起来,这样的统计图,称为条形统计图。
条形统计图可以清楚地表明各种数量的多少。
条形图是统计图资料分析中最常用的图形。
按照排列方式的不同,可分为纵式条形图和横式条形图;按照分析作用的不同,可分为条形比较图和条形结构图。
条形统计图的特点:
(1)能够使人们一眼看出各个数据的大小。
(2)易于比较数据之间的差别。
二、扇形统计图
以一个圆的面积表示事物的总体,以扇形面积表示占总体的百分数的统计图,叫作扇形统计图。
也叫作百分数比较图。
扇形统计图可以比较清楚地反映出部分与部分、部分与整体之间的数量关系。
扇形统计图的特点:
(1)用扇形的面积表示部分在总体中所占的百分比。
(2)易于显示每组数据相对于总数的大小。
三、折线统计图
以折线的上升或下降来表示统计数量的增减变化的统计图,叫作折线统计图。
与条形统计图比较,折
线统计图不仅可以表示数量的多少,而且可以反映同一事物在不同时间里的发展变化的情况。
折线图在生活中运用的非常普遍,虽然它不直接给出精确的数据,但只要掌握了一定的技巧,熟练运用“坐标法”也可以很快地确定某个具体的数据。
折线统计图的特点:
(1)能够显示数据的变化趋势,反映事物的变化情况。
四、网状统计图
网状统计图的特点是:
这类统计图中只有一些字母,字母所代表的意义都在题外,在答题前必弄清这些字母代表的意义,在具体的答题过程中就可以脱离字母,较简便地得出答案。