4.3线性相关性
- 格式:pdf
- 大小:384.16 KB
- 文档页数:19
线性相关性:如何判断向量组是否线性相关及其应用线性相关性:如何判断向量组是否线性相关及其应用2023年,随着科技的不断发展,线性代数在各行各业中的应用不断扩展,尤其是在数据科学、机器学习和人工智能领域中。
而线性相关性作为线性代数中的一个重要概念,在这些领域中也得到了广泛应用。
本文将重点讨论线性相关性的概念、判断方法和应用,以帮助读者更好地理解和使用线性相关性。
一、概念线性相关性是指向量组中存在线性关系,即其中至少存在一个向量可以表示为其它向量的线性组合的形式,或者说存在一个向量可以由其它向量线性表示。
具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,若存在一个非零向量$\mathbf{v}$,满足$\mathbf{v}=\sum\limits_{i=1}^n c_i\mathbf{v_i}$,其中$c_i$为任意实数,则称向量组$V$是线性相关的,否则称其线性无关。
二、判断方法下面介绍两种判断向量组线性相关的方法,分别为行列式法和向量空间法。
1.行列式法行列式法是最常用的判断向量组线性相关的方法,其基本思想是求出向量组的行列式,如果其值为0,则向量组线性相关,否则其线性无关。
具体地,对于向量组$V={\mathbf{v_1},\mathbf{v_2},\cdots,\mathbf{v_n}}$,可以将其写成矩阵形式,即:$$ A=\begin{bmatrix} v_{11}&v_{12}&\cdots&v_{1n}\\v_{21}&v_{22}&\cdots&v_{2n}\\ \vdots&\vdots&\ddots&\vdots\\ v_{n1}&v_{n2}&\cdots&v_{nn} \end{bmatrix} $$然后求出其行列式$|A|$,若$|A|=0$,则向量组$V$是线性相关的,否则其线性无关。
二元函数的线性相关性线性相关性是描述两个二元函数之间的关系的一个重要指标。
当两个二元函数存在线性相关性时,它们的图像可以通过一个线性方程描述。
具体来说,对于两个二元函数f(x)和g(x),如果存在不全为零的常数a和b,使得对于所有的x,有af(x)+bg(x)=0,我们称f(x)和g(x)是线性相关的。
线性相关性对于多个二元函数也同样适用。
对于n个二元函数f1(x),f2(x),...,fn(x),如果存在不全为零的常数a1,a2,...,an,使得对于所有的x,有a1f1(x)+a2f2(x)+...+anfn(x)=0,我们称f1(x),f2(x),...,fn(x)是线性相关的。
线性相关性的研究在数学、物理学、工程学等许多学科中具有重要的意义。
下面我们将从不同的角度探讨二元函数的线性相关性。
1.线性相关性的定义和性质:线性相关性的定义在前文已经给出。
除了这个定义外,线性相关性还有以下性质:1.1 若f(x)和g(x)线性相关,则它们的线性组合也是线性相关的。
即对于任意的常数a和b,有af(x)+bg(x)=0,则对于任意的常数c和d,有caf(x)+dbg(x)=0。
1.2 若f(x)和g(x)线性相关,则它们的导数也是线性相关的。
即若有af(x)+bg(x)=0,则有a'f'(x)+b'g'(x)=0。
1.3 若f(x)和g(x)线性相关,则它们的积分也是线性相关的。
即若有af(x)+bg(x)=0,则有∫(a*f(x)+b*g(x))dx=0。
2. 线性相关性的判断:对于给定的二元函数f(x)和g(x),我们如何判断它们是否线性相关呢?最常用的方法是求解它们的Wronskian行列式。
具体步骤如下:2.1计算f(x)和g(x)的导数f'(x)和g'(x)。
2.2 构造Wronskian行列式W(f,g)(x)=f(x)g'(x)-g(x)f'(x)。
线性相关性与线性无关性标题:线性相关性与线性无关性的原理和应用引言:在数学和统计学中,线性相关性和线性无关性是两个基本概念。
它们对于解决各种实际问题和优化模型都具有重要意义。
本文将介绍线性相关性和线性无关性的原理、性质以及在实际应用中的具体应用案例。
一、线性相关性的定义与性质1.1 线性相关性的定义线性相关性指的是两个或多个变量之间存在线性关系,即它们的数值可以通过线性方程或线性组合相互表示。
如果存在非零系数,能够使得线性组合等于零,则这些变量是线性相关的。
1.2 线性相关性的性质(1)线性相关性是对称的,即若变量A与变量B线性相关,则变量B与变量A也线性相关。
(2)如果变量A与变量B线性相关,并且变量B与变量C线性相关,则变量A与变量C也线性相关。
(3)若某组变量中存在一个变量与其他变量线性无关,则该组变量是线性无关的。
二、线性无关性的定义与性质2.1 线性无关性的定义线性无关性指的是一个向量组中的各个向量之间不存在线性关系,即不能由其他向量线性表示。
2.2 线性无关性的性质(1)线性无关性并不意味着所有变量都是相互独立的,它只是表示线性关系的独立性。
(2)如果变量A与变量B线性无关,并且变量B与变量C线性无关,则变量A与变量C也线性无关。
(3)在具有n个未知数和n个方程的线性方程组中,如果其系数矩阵满秩,那么方程组的解是唯一的。
三、线性相关性与线性无关性的应用案例3.1 线性相关性在金融领域的应用在金融领域,线性相关性常用于构建投资组合和风险管理。
通过对不同资产的历史数据进行线性相关性分析,可以评估它们之间的相关性程度,有助于投资者进行有效的分散投资和风险控制。
3.2 线性无关性在图像处理中的应用在图像处理领域,线性无关性可以用于图像压缩和去噪。
通过去除图像中线性相关的冗余信息,可以有效减小图像文件大小,提高存储和传输效率。
同时,利用线性无关性的特性,可以去除图像中的噪声,还原出清晰的图像。
第四章 向量组的线性相关性§4.1 向量及其运算1.向量:个数构成的有序数组, 记作n n a a a ,,,21L ),,,(21n a a a L =α, 称为维行向量.n –– 称为向量i a α的第i 个分量R ∈i a –– 称α为实向量(下面主要讨论实向量) 零向量 )0,,0,0(L =θ;负向量 ),,,()(21n a a a −−−=−L α 2.线性运算:),,,(21n a a a L =α, ),,,(21n b b b L =β相等:若, 称),,2,1(n i b a i i L ==βα=.加法:=+βα),,,(2211n n b a b a b a +++L数乘:),,,(21n ka ka ka k L =α减法:=−βα=−+)(βα),,,(2211n n b a b a b a −−−L 3.算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) αββα+=+ (5) αα=1(2) )()(γβαγβα++=++ (6) αα)()(l k l k =(3) αθα=+ (7) βαβαk k k +=+)((4) θαα=−+)( (8) αααl k l k +=+)(4.列向量:个数构成的有序数组, 记作, n n a a a ,,,21L ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n a a a M 21α或者, 称为维列向量.T 21),,,(n a a a L =αn 零向量: 负向量: ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=000M θ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−=−n a a a M 21)(α 5.内积:设实向量),,,(21n a a a L =α, ),,,(21n b b b L =β, 称 实数n n b a b a b a +++=L 2211],[βα为α与β的内积. 算律:),,,(21n a a a L =α,),,,(21n b b b L =β,),,,(21n c c c L =γ(1) ],[],[αββα=(2) ],[],[βαβαk k = (为常数)k (3) ],[],[],[γβγαγβα+=+(4) θα≠时, 0],[>αα;θα=时, 0],[=αα. (5)],[],[],[2ββααβα⋅≤证(5) R ∈∀t , 由0],[≥++βαβαt t 可得0],[],[2],[2≥++t t βββααα ⇒≤0Δ0],[],[4],[42≤⋅−ββααβα],[],[],[2ββααβα⋅≤⇒6.范数:设实向量α, 称实数],[ααα=为α的范数.性质:(1) θα≠时, 0>α;θα=时, 0=α.(2) αα⋅=k k )R (∈∀k(3) βαβα+≤+(4) βαβα−≤−证(3) ],[],[2],[],[2βββαααβαβαβα++=++=+()2222βαββαα+=++≤7.夹角:设实向量θα≠,θβ≠, 称 βαβαϕ],[arccos= )π0(≤≤ϕ为α与β之间的夹角. 正交:若0],[=βα, 称α与β正交, 记作βα⊥.(1) θα≠,θβ≠时, βα⊥2π=⇔ϕ; (2) θα=或θβ=时, βα⊥有意义, 而ϕ无意义.单位化:若θα≠, 称ααα10=为与α同方向的单位向量.§4.2 向量组的线性相关性1.线性组合:对n 维向量α及m αα,,1L , 若有数组使m k k ,,1L 得m m k k ααα++=L 11, 称α为m αα,,1L 的线性组合,或称α可由m αα,,1L 线性表示.例1 , , , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1112β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=1133β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1354β 判断4β可否由321,,βββ线性表示?解 设3322114ββββk k k ++=,比较两端的对应分量可得, 求得一组解为.故 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−321111110311k k k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=135⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡120321k k k 3214120ββββ++=, 即4β可由321,,βββ线性表示.[注] 取另一组解时, 有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡032321k k k 3214032ββββ++=. 2.线性相关:对n 维向量组m αα,,1L , 若有数组不全m k k ,,1L 为0, 使得 θαα=++m m k k L 11, 则称向量组m αα,,1L 线性相关;否则,称为线性无关.线性无关:对维向量组n m αα,,1L , 仅当数组全m k k ,,1L 为0时, 才有 θαα=++m m k k L 11, 称向量组m αα,,1L 线性无关;否则,称为线性相关.[注] 对于单个向量α:若θα=, 则α线性相关;若θα≠, 则α线性无关.例2 判断例1中向量组4321,,,ββββ的线性相关性. 解 设θββββ=+++44332211k k k k , 比较对应分量可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−0001111311053114321k k k k 即0=Ax .因为未知量的个数是4, 而4rank <A , 所以0=Ax 有非零解, 由定义知4321,,,ββββ线性相关.例3 已知向量组321,,ααα线性无关, 证明向量组211ααβ+=, 322ααβ+=, 133ααβ+= 线性无关.证 设 θβββ=++332211k k k , 则有θααα=+++++332221131)()()(k k k k k k 因为321,,ααα线性无关, 所以⎪⎩⎪⎨⎧=+=+=+000322131k k k k k k , 即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000110011101321k k k 系数行列式 02110011101≠=, 该齐次方程组只有零解.故321,,βββ线性无关.例4 判断向量组 )0,,0,0,1(1L =e , )0,,0,1,0(2L =e , … ,)1,0,,0,0(L =n e 的线性相关性.解 设 θ=+++n n e k e k e k L 2211, 则有⇒=θ),,,(21n k k k L 只有0,,0,021===n k k k L 故线性无关.n e e e ,,,21L 例5 设向量组m ααα,,,21L 两两正交且非零, 证明该向量组线性无关.证 设 θααα=+++m m k k k L 2211, 两端与i α作内积可得 ],[],[],[],[11i i m m i i i i k k k αθαααααα=++++L L 当j i ≠时, 0],[=j i αα, 于是有⇒=0],[i i i k αα只有0=i k )(θα≠i Q上式对于m i ,,2,1L =都成立, 故m ααα,,,21L 线性无关.3.判定定理定理1 向量组)2(,,,21≥m m αααL 线性相关⇔其中至少有一个向量可由其余1−m 个向量线性表示.证 必要性.已知m ααα,,,21L 线性相关, 则存在m k k k ,,,21L 不全为零, 使得 θααα=+++m m k k k L 2211.不妨 设, 则有 01≠k m m k k k k ααα)()(12121−++−=L . 充分性.不妨设m m k k ααα++=L 221, 则有θααα=+++−m m k k L 221)1(因为不全为零, 所以m k k ,,,)1(2L −m ααα,,,21L 线性相关.定理2 若向量组m ααα,,,21L 线性无关, βααα,,,,21m L 线性相关, 则β可由m ααα,,,21L 线性表示, 且表示式唯一.证 因为βαα,,,1m L 线性相关, 所以存在数组不k k k m ,,,1L 全为零, 使得 θβαα=+++k k k m m L 11.若, 则 0=k θαα=++m m k k L 11, 从而有0,,01==m k k L 矛盾! 故, 从而有 0≠k m m kk k k ααβ)()(11−++−=L .下面证明表示式唯一:若 m m k k ααβ++=L 11, m m l l ααβ++=L 11 则有 θαα=−++−m m m l k l k )()(111L因为m ααα,,,21L 线性无关, 所以0,,011=−=−m m l k l k L ⇒m m l k l k ==,,11L 即β的表示式唯一.定理3 r αα,,1L 线性相关⇒)(,,,,,11r m m r r >+ααααL L线性相关.证 因为r αα,,1L 线性相关, 所以存在数组不全为r k k ,,1L 零, 使得 θαα=++r r k k L 11, 即θαααα=++++++m r r r k k 00111L L数组不全为零, 故0,,0,,,1L L r k k m r r αααα,,,,,11L L +线性相关.推论1 含零向量的向量组线性相关.推论2 向量组线性无关⇒任意的部分组线性无关.课后作业:习题四 1, 2, 3, 4, 5定理4 设m i a a a in i i i ,,2,1,),,,(21L L ==α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a L M M M L L 212222111211 (1) m ααα,,,21L 线性相关m A <⇔rank ;(2) m ααα,,,21L 线性无关m A =⇔rank .证 设 θααα=+++m m k k k L 2211比较等式两端向量的对应分量可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡00021212221212111M M L M M M L L m mn n n m m k k k a a a a a a a a a 即 0T =x A .由定理3.5可得:m ααα,,,21L 线性相关0T =⇔x A 有非零解m A <⇔T rank m A <⇔rankn m 推论1 在定理4中, 当=时, 有(1) n ααα,,,21L 线性相关0det =⇔A ;(2) n ααα,,,21L 线性无关0det ≠⇔A .n m 推论2 在定理4中, 当<时, 有(1) m ααα,,,21L 线性相关A ⇔中所有的阶子式;m 0=m D (2) m ααα,,,21L 线性无关⇔A 中至少有一个阶子式m 0≠m D .推论3 在定理4中, 当时, 必有n m >m ααα,,,21L 线性相关.因为m n A <≤rank , 由定理4(1)即得.推论4 向量组:1T m i a a a ir i i i ,,2,1,),,,(21L L ==α向量组:2T m i a a a a in r i ir i i ,,2,1,),,,,,(1,1L L L ==+β若线性无关, 则线性无关.1T 2T 证 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m r m A αααM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=r m m m r r a a a a a a a a a L M M M L L 212222111211 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×m n m B βββM 21⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=+++n m r m r m m n r r n r r a a a a a a a a a a a a L L M M M M L L L L 1,121,222111,1111 线性无关1T m A =⇒rank是A B 的子矩阵m A B =≥⇒rank rank⇒=⇒m B rank 2T 线性无关定理5 划分, 则有[]n m n m A βββαααL M 2121=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=×(1) 中某个A ⇒≠0r D A 中“所在的”个行向量线性无关;r D r中“所在的”r 个列向量线性无关.A r D (2) 中所有中任意的r 个行向量线性相关; A A D r ⇒=0 中任意的个列向量线性相关.A r 证 只证“行的情形”:(1) 设位于的行, 作矩阵, 则有r D A r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 r i i r B αα,,rank 1L ⇒=线性无关.(2) 任取中个行, 设为行, 作矩阵,A r r i i ,,1L ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=×r i i nr B ααM 1 则有r i i r B αα,,rank 1L ⇒<线性相关.[注] 称m ααα,,,21L 为的行向量组A 称n βββ,,,21L 为的列向量组A §4.3 向量组的秩与最大无关组1.向量组的秩:设向量组为T , 若(1) 在T 中有r 个向量r ααα,,,21L 线性无关;(2) 在T 中任意个向量线性相关.1+r (如果有个向量的话)1+r 称r ααα,,,21L 为向量组T 的一个最大线性无关组,称为向量组T 的秩, 记作 秩r r T =)(.[注](1) 向量组中的向量都是零向量时, 其秩为0.(2) 秩r T =)(时, T 中任意个线性无关的向量都是T 的r 一个最大无关组.例如, , , , 的秩为2. ⎥⎦⎤⎢⎣⎡=011α⎥⎦⎤⎢⎣⎡=102α⎥⎦⎤⎢⎣⎡=113α⎥⎦⎤⎢⎣⎡=224α 21,αα线性无关21,αα⇒是一个最大无关组31,αα线性无关31,αα⇒是一个最大无关组定理6 设, 则1rank ≥=×r A n m (1) 的行向量组(列向量组)的秩为;A r (2) 中某个中所在的r 个行向量(列向量)A A D r ⇒≠0r D 是的行向量组(列向量组)的最大无关组.A 证 只证“行的情形”:A r A ⇒=rank 中某个0≠r D , 而中所有 A 01=+r D 定理5中所在的r 个行向量线性无关A ⇒r D 中任意的A 1+r 个行向量线性相关由定义:的行向量组的秩为, 且中所在的r 个行向A r A r D 是的行向量组的最大无关组.A 例6 向量组T :, , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−=2011β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0232β⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−=1123β, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=5324β求T 的一个最大无关组.解 构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231 求得⇒=2rank A 秩2)(=T矩阵中位于1,2行1,2列的二阶子式A 022031≠= 故21,ββ是T 的一个最大无关组.[注] T 为行向量组时, 可以按行构造矩阵.A 定理7n m n m B A ××,(1) 若, 则“的列”线性相关(线性无关)B A 行→A k c c ,,1L 的充要条件是“B 的列”线性相关(线性无关); k c c ,,1L (2) 若, 则“的行”线性相关(线性无关)B A 列→A k r r ,,1L 的充要条件是“B 的行”线性相关(线性无关). k r r ,,1L 证 (1) 划分[]n n m A αααL 21=×, []n n m B βββL 21=× 由可得 B A 行→[][]k k c c c c ββααL L 11行→ 故方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k αα 与方程组 []⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡0011M M L k c c x x k ββ 同解.于是有 k c c αα,,1L 线性相关011=+ 存在不全为0, 使得⇔k x x ,,1L +k c k c x x αL α 存在不全为0, 使得⇔k x x ,,1L 011=++k c k c x x ββL ⇔k c c ββ,,1L 线性相关同理可证(2).[注] 通常习惯于用初等行变换将矩阵化为阶梯形矩阵A B ,当阶梯形矩阵B 的秩为时, r B 的非零行中第一个非零元素所在的个列向量是线性无关的.r 例如:求例6中向量组T 的一个最大无关组.构造矩阵[]4321ββββ=A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−=510231202231⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−→936031202231行B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−→000031202231行 ⇒==2rank rank B A 秩2)(=TB 的1,2列线性无关的1,2列线性无关A ⇒21,ββ⇒是T 的一个最大无关组 例7 向量组T :,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=31111α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=15312α,, ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−=21233c α⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−=c 10624α 求向量组T 的一个最大无关组.解 对矩阵[]4321αααα=A 进行初等行变换可得⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−=c c A 2131015162312311⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+−−−−−−−→67401246041202311c c 行 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−−→2900070041202311c c 行B c =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡−−−−−−−→2000070041202311行 (1) :2≠c 4rank rank ==B AB 的1,2,3,4列线性无关的1,2,3,4列线性无关 A ⇒ 故4321,,,αααα是T 的一个最大无关组;(2) :2=c 3rank rank ==B AB 的1,2,3列线性无关的1,2,3列线性无关 A ⇒ 故321,,ααα是T 的一个最大无关组.[注] 当m ααα,,,21L 为行向量组时, 为列向量组. T T 2T 1,,,mαααL 若矩阵[]T T 2T 1m A αααL = 的列向量组的一个最大无关 组为, 则是行向量组T T ,,1r c c ααL r c c αα,,1L m ααα,,,21L 的 一个最大无关组.课后作业:习题四 7,8 (理解、记忆定理1~7)。