高三数学导数基础讲义教案
- 格式:doc
- 大小:517.00 KB
- 文档页数:6
高中数学《导数》教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义强调导数表示函数在某一点的瞬时变化率1.2 导数的计算法则介绍导数的四则运算法则举例说明导数的计算过程1.3 导数的应用解释导数在实际问题中的应用,如速度、加速度等给出实际问题,让学生应用导数进行解答第二章:导数的性质与单调性2.1 导数的性质介绍导数的单调性、连续性、可导性等基本性质证明导数的性质2.2 函数的单调性解释函数的单调性及单调区间利用导数判断函数的单调性2.3 单调性的应用给出实际问题,让学生利用单调性进行解答解释单调性在实际问题中的应用,如最大值、最小值等第三章:导数与曲线的切线3.1 导数与切线的关系解释导数在某一点的含义,即函数在该点的切线斜率给出切线方程的求法3.2 利用导数求曲线的切线举例说明如何利用导数求曲线的切线方程给出实际问题,让学生求曲线的切线方程3.3 切线的应用解释切线在实际问题中的应用,如求解函数零点、不等式等给出实际问题,让学生利用切线进行解答第四章:导数与函数的极值4.1 函数的极值概念解释函数的极值及极值点强调极值与导数的关系4.2 利用导数求函数的极值介绍求函数极值的方法,即导数为零和不存在的点举例说明如何利用导数求函数的极值4.3 极值的判断与应用解释极值在实际问题中的应用,如最大值、最小值等给出实际问题,让学生利用极值进行解答第五章:导数与其他数学概念的联系5.1 导数与积分的关系解释导数与积分的联系,即导数是积分的逆运算举例说明导数与积分的应用5.2 导数与极限的关系解释导数与极限的联系,即导数的极限是函数在该点的值举例说明导数与极限的应用5.3 导数与其他数学概念的联系强调导数与微分方程、泰勒展开等数学概念的联系给出实际问题,让学生利用导数与其他数学概念进行解答第六章:利用导数解决实际问题6.1 应用导数解决线性增长和减少问题解释如何利用导数解决线性函数的增长和减少问题给出实际问题,让学生应用导数解决6.2 应用导数解决曲线的凹凸问题解释如何利用导数解决曲线的凹凸问题给出实际问题,让学生应用导数解决6.3 应用导数解决实际问题案例分析分析实际问题,让学生理解导数在解决实际问题中的应用第七章:利用导数进行优化7.1 解释优化问题的概念解释优化问题及目标函数强调利用导数解决优化问题的方法7.2 利用导数解决线性优化问题解释如何利用导数解决线性优化问题给出实际问题,让学生应用导数解决7.3 利用导数解决非线性优化问题解释如何利用导数解决非线性优化问题给出实际问题,让学生应用导数解决第八章:利用导数解决不等式问题8.1 解释不等式问题的概念解释不等式问题及解集强调利用导数解决不等式问题的方法8.2 利用导数解决单变量不等式问题解释如何利用导数解决单变量不等式问题给出实际问题,让学生应用导数解决8.3 利用导数解决多变量不等式问题解释如何利用导数解决多变量不等式问题给出实际问题,让学生应用导数解决第九章:利用导数解决函数图像问题9.1 解释函数图像问题的概念解释函数图像问题及解决方法强调利用导数解决函数图像问题的方法9.2 利用导数解决函数单调性问题解释如何利用导数解决函数单调性问题给出实际问题,让学生应用导数解决9.3 利用导数解决函数极值性问题解释如何利用导数解决函数极值性问题给出实际问题,让学生应用导数解决第十章:利用导数解决实际应用问题案例分析10.1 分析实际应用问题分析实际应用问题,让学生理解导数在解决实际问题中的应用强调导数在实际问题中的重要性10.2 让学生进行实际问题案例分析让学生分组讨论,分析实际应用问题让学生汇报他们的分析和解决方法10.3 总结总结本节课的重点内容强调导数在解决实际问题中的重要性鼓励学生在日常生活中发现并解决实际问题重点和难点解析一、导数的基本概念难点解析:理解导数的几何意义,即函数图像在某一点的切线斜率。
高中数学求导教案
一、知识背景
1.导数的概念及求导法则
2.常见函数的导数计算方法
3.高中数学应用题中的求导问题
二、教学目标
1.理解导数的概念,掌握求导的基本方法和步骤
2.能够准确计算常见函数的导数
3.能够熟练运用求导技巧解决高中数学应用题
三、教学过程
1.导入:引入导数的概念,引导学生对导数的认识和重要性
2.讲解:介绍导数的定义及求导的基本法则,讲解常见函数的导数计算方法
3.练习:让学生进行一些简单的求导练习,帮助他们掌握基本技巧
4.应用:结合高中数学课本中的应用题,让学生运用求导技巧解决实际问题
5.总结:总结本节课的重点内容,强化学生对导数的理解和掌握程度
四、课后练习
1.计算函数f(x)=x^2的导数
2.计算函数g(x)=sin(x)的导数
3.解决以下问题:已知函数y=x^3-2x^2+3x-1,求其在点(1,2)处的切线方程及斜率
五、教学反馈
1.及时对学生的练习结果进行评价和反馈
2.针对学生存在的问题进行有针对性的辅导和指导
六、教学评估
1.通过课堂表现和课后练习评估学生对导数的理解和掌握情况
2.根据学生的学习情况调整教学方法和资源,提高教学效果
七、拓展
1.引导学生利用求导技巧解决更复杂的高中数学问题
2.培养学生对数学的兴趣和实践能力,提高他们的数学素养
以上是一份高中数学求导教案的范本,教师可以根据具体情况进行适当调整和创新,以提高教学效果和学生学习兴趣。
高三导数教案教案标题:高三导数教案教案目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法和常用公式;3. 运用导数解决实际问题。
教学重点:1. 导数的定义和计算方法;2. 导数与函数图像的关系;3. 导数在实际问题中的应用。
教学难点:1. 导数的概念和意义的深入理解;2. 导数在实际问题中的应用能力培养。
教学准备:1. 教学课件和教材;2. 导数相关的练习题和实例;3. 计算器和图形绘制工具。
教学过程:一、导入(5分钟)1. 利用一个简单的实例引入导数的概念,如小车行驶的速度和位置之间的关系。
二、导数的定义和计算方法(15分钟)1. 介绍导数的定义:函数在某一点处的变化率;2. 讲解导数的计算方法,包括用极限定义导数和常用导数公式。
三、导数与函数图像(20分钟)1. 解释导数与函数图像的关系,导数的正负表示函数的增减性;2. 利用导数的概念和计算方法,分析函数在不同区间的变化趋势。
四、导数在实际问题中的应用(25分钟)1. 介绍导数在实际问题中的应用,如最优化问题和曲线的切线问题;2. 给出实际问题的例子,并引导学生运用导数求解。
五、练习与巩固(20分钟)1. 分发练习题,让学生独立或小组完成;2. 引导学生分析和解答练习题,巩固导数的计算和应用能力。
六、总结与拓展(10分钟)1. 总结导数的概念、计算方法和应用;2. 提出导数进一步拓展的方向,如高阶导数和导数的几何意义。
教学延伸:1. 鼓励学生自主学习更多导数的应用领域,如物理学和经济学;2. 提供更多的练习题和实例,帮助学生巩固和拓展导数的应用能力。
教学评估:1. 课堂练习题的完成情况和答案讲解;2. 学生对导数概念和应用的理解程度;3. 学生在实际问题中运用导数解决问题的能力。
教学反思:1. 教学过程中是否能够引起学生的兴趣和参与度;2. 学生对导数概念和应用的理解是否清晰;3. 是否需要调整教学方法和内容,以提高学生的学习效果。
高中数学导数教案模板教学内容:导数教学目标:1. 了解导数的概念和意义。
2. 掌握导数的计算方法。
3. 熟练应用导数解决实际问题。
教学重点:1. 导数的定义和计算方法。
2. 导数在函数图像中的应用。
教学难点:1. 导数的概念理解。
2. 导数的计算方法应用。
教学过程:一、导入(5分钟)1. 引入导数的概念,提出问题:“你知道导数是什么吗?它有什么作用?”二、概念讲解(15分钟)1. 介绍导数的定义和意义。
2. 讲解导数的计算方法:求导规则、导数的性质。
3. 举例说明导数的应用。
三、练习与讨论(20分钟)1. 练习导数的计算方法。
2. 分组讨论解决实际问题中导数的应用。
3. 教师解答疑问,帮助学生理解导数的概念。
四、实际应用(15分钟)1. 布置课后作业:练习题、应用题。
2. 鼓励学生在日常生活中寻找导数的应用。
五、总结与评价(5分钟)1. 总结本节课的重点内容。
2. 对学生的表现给予积极评价。
教学反思:1. 本节课教学内容选材合理,能够引起学生的兴趣。
2. 学生对导数的理解和应用能力有待加强,需要多进行实际问题的训练。
教学素材:1. 导数的教科书及练习题。
2. 导数的相关实例和应用题。
3. 视频、图片等辅助教学材料。
教学效果评估:1. 对学生进行课后作业的评分和批改。
2. 观察学生在课堂上的表现和回答问题的能力。
3. 根据学生的学习情况调整后续教学计划。
高中数学《导数》教案一、教学目标1. 让学生理解导数的定义和几何意义,掌握导数的计算方法。
2. 培养学生运用导数解决实际问题的能力,提高其数学思维品质。
3. 通过对导数的学习,使学生感受数学与实际生活的紧密联系,培养其应用意识。
二、教学内容1. 导数的定义2. 导数的几何意义3. 导数的计算方法4. 导数在实际问题中的应用三、教学重点与难点1. 教学重点:导数的定义、几何意义、计算方法及应用。
2. 教学难点:导数的计算方法,特别是复合函数的导数。
四、教学方法1. 采用问题驱动法,引导学生通过探究、合作、交流的方式学习导数。
2. 利用多媒体课件,直观展示导数的几何意义,增强学生对概念的理解。
3. 结合具体实例,让学生感受导数在实际问题中的应用,提高其应用能力。
五、教学过程1. 导入新课:通过复习初等函数的图像,引入导数的定义。
2. 讲解导数的定义:引导学生理解导数的极限思想,讲解导数的定义及计算方法。
3. 导数的几何意义:利用多媒体课件,展示导数表示切线斜率的直观图形,让学生理解导数的几何意义。
4. 导数的计算方法:讲解基本函数的导数公式,引导学生掌握导数的计算方法,特别注意复合函数的导数。
5. 导数在实际问题中的应用:通过具体实例,让学生运用导数解决实际问题,如运动物体的瞬时速度、加速度等。
6. 课堂练习:布置具有代表性的习题,巩固所学内容。
8. 课后作业:布置适量作业,巩固所学知识,提高学生自主学习能力。
六、教学评价1. 通过课堂讲解、练习和作业,评估学生对导数定义、几何意义和计算方法的掌握程度。
2. 结合实际问题解决案例,评价学生运用导数分析问题和解决问题的能力。
3. 利用课后作业和阶段测试,了解学生对导数知识的巩固情况,为后续教学提供反馈。
七、教学反思1. 课后及时反思教学效果,针对学生的掌握情况调整教学策略。
2. 关注学生在学习过程中的困惑和问题,及时解答并提供针对性的辅导。
3. 探索更多有效的教学方法,如案例分析、小组讨论等,提高教学质量和学生的学习兴趣。
高中数学导数简单解释教案教学目标:1. 了解导数的概念及意义;2. 掌握导数的计算方法;3. 运用导数解决实际问题。
教学内容:1. 导数的概念及意义;2. 导数的计算方法:基本函数导数、常用导数公式;3. 导数的性质:导数与函数的关系、导数的物理意义;4. 运用导数解决实际问题。
教学重点:1. 导数的概念及意义;2. 导数的计算方法;3. 运用导数解决实际问题。
教学难点:1. 导数的物理意义;2. 运用导数解决实际问题。
教学准备:1. PowerPoint 等教学PPT;2. 教学板书及笔;3. 实例问题练习题;4. 实验器材(如位置传感器等)。
教学过程:一、导入(5分钟)通过引入一个生活中的例子,引起学生对导数概念的兴趣和认识。
二、概念解释(10分钟)1. 定义导数:函数在某一点的导数表示函数在这一点斜率的大小;2. 导数的意义:导数可以描述函数的变化速率、趋势和曲率。
三、计算方法(15分钟)1. 基本函数的导数计算方法;2. 常用导数公式;3. 解题练习。
四、性质探讨(10分钟)1. 导数与函数的关系;2. 导数的物理意义:速度、加速度等概念。
五、综合运用(15分钟)通过一些实际问题,让学生应用导数的知识解决实际问题。
六、作业布置(5分钟)布置导数相关的练习题,巩固学生的知识。
七、课堂小结(5分钟)总结导数的基本概念和计算方法,强调导数在解决实际问题中的重要性和应用。
教学反思:本节课主要围绕导数的概念、计算方法和应用展开,通过生活例子和实际问题的引入,帮助学生理解和掌握导数的知识。
同时,引入一些物理意义,增加了导数概念的深度和广度,提高了学生的学习热情和参与度。
在教学过程中,注重培养学生的问题解决能力和思维方式,引导学生主动探索和学习导数知识。
导数的专题教案高中数学一、教学目标1. 理解导数的概念,掌握导数的计算方法;2. 熟练运用导数的基本性质,能够求解简单的导数问题;3. 能够应用导数解决相关实际问题。
二、教学内容1. 导数的概念及意义;2. 导数的计算方法;3. 导数的基本性质;4. 导数在相关实际问题中的应用。
三、教学重点和难点重点:导数的概念及计算方法;难点:导数的应用问题解决。
四、教学过程1. 导数的概念介绍(1)引入导数的概念,解释导数的物理意义;(2)导数的记号表示及意义解释;(3)讲解导数的定义及其几何意义。
2. 导数的计算方法(1)导数的计算公式及方法;(2)导数运算规律与性质;(3)导数的常见函数和导数基本公式;(4)导数的计算实例演练。
3. 导数的基本性质(1)导数存在的条件及充分条件;(2)导数与函数的性质;(3)导数的零点、极值点及拐点。
4. 导数在实际问题中的应用(1)导数在函数极值、曲线凹凸性、最优化等问题中的应用;(2)相关实际问题导数求解方法讲解及实例演练。
五、教学方法1. 示例法,引导学生理解导数的概念与意义;2. 讲授法,系统讲解导数的计算方法与性质;3. 实例演练法,操练导数计算方法与应用技巧;4. 讨论法,指导学生学会分析、解决相关实际问题。
六、板书设计1. 导数的概念与意义;2. 导数计算方法;3. 导数的基本性质;4. 导数在实际问题中的应用。
七、教学反思导数作为高中数学的重要概念,在学生的学习中具有重要作用。
通过对导数的概念、计算方法和应用的系统讲解和练习,能够有效提高学生的理解能力和解决问题的能力。
同时,教师要注意启发学生思维,激发学生学习兴趣,帮助学生建立导数与实际问题之间的联系,提升学生的学习效果。
数学高中导数定律教案
教学目标:
1.理解导数的定义和意义。
2.掌握导数的基本运算法则。
3.掌握导数的常用定律。
教学重点:
1.导数的定义和基本运算法则。
2.导数的常用定律。
教学难点:
1.对导数的理解和应用。
2.导数的运算法则及定律的灵活运用。
教学准备:
1.教科书、教具、黑板、彩色粉笔。
2.学生练习本。
教学过程:
一、导入(5分钟)
教师引导学生回顾导数的定义和意义,引出导数的运算法则和常用定律。
二、讲解导数的基本运算法则(10分钟)
1.导数的四则运算法则。
2.导数的复合函数法则。
三、讲解导数的常用定律(15分钟)
1.常数函数导数的定理。
2.幂函数导数的定理。
3.指数函数导数的定理。
4.对数函数导数的定理。
四、巩固练习(15分钟)
教师出示几道相关的练习题,让学生运用所学的导数定律进行练习,并进行讲解。
五、课堂小结(5分钟)
教师和学生一起回顾本节课的重点内容,并对导数的定律进行总结。
六、作业布置(5分钟)
布置相关的作业,要求学生运用导数的定律进行求解。
教学反思:
通过本节课的学习,学生能够掌握导数的基本运算法则和常用定律,并能够灵活运用导数
定律解决相关问题。
同时,教师也要引导学生多进行练习,加深对导数定律的理解和掌握。
高中数学导数解读教案教学目标:1. 理解导数的概念和意义;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。
教学重点:1. 导数的定义;2. 导数的计算方法;3. 导数的应用。
教学内容:一、导数的定义和意义1. 导数的概念;2. 导数的几何意义;3. 导数的物理意义。
二、导数的计算方法1. 利用极限的定义求导数;2. 基本函数的导数;3. 导数的运算法则。
三、导数的应用1. 函数的极值与导数;2. 函数的单调性与导数;3. 函数的凹凸性与导数。
教学过程:一、导数的定义和意义1. 引入导数的概念,让学生了解导数的基本定义;2. 通过几何图形和实际问题引出导数的几何和物理意义。
二、导数的计算方法1. 解释极限的概念,介绍如何利用极限的定义求导数;2. 分别介绍基本函数的导数及导数的运算法则,让学生掌握导数的计算方法。
三、导数的应用1. 通过实例讲解如何利用导数求函数的极值;2. 通过图像分析函数的单调性和凹凸性与导数的关系,引导学生找出函数导数的应用方法。
教学材料:1. 课件:导数的定义和应用;2. 习题集:导数的计算方法和应用练习题。
教学评价:1. 在课堂上通过讲解、练习和实例分析等多种方式检测学生对导数概念的理解;2. 布置作业和阶段性考试,检验学生对导数计算方法和应用的掌握程度。
教学反思:1. 注重培养学生对导数概念和意义的理解,帮助他们建立扎实的数学基础;2. 教学要注重理论与实践相结合,让学生能够灵活运用导数解决实际问题。
高中数学导数专题教案教学内容:导数教学目标:1. 掌握导数的定义及性质。
2. 熟练运用导数求函数的极值、最值等问题。
3. 能够应用导数解决实际问题。
教学重点:1. 导数的定义2. 导数的性质3. 求导数的方法教学难点:1. 导数的应用问题解决教学准备:1. 教材:高中数学教材2. 辅助教材:导数相关练习题3. 教学工具:黑板、白板、投影仪等教学步骤:一、导数的定义(30分钟)1. 引入导数的概念,解释导数的直观意义。
2. 讲解导数的定义及计算方法。
3. 举例说明导数的意义和计算过程。
4. 让学生自己计算一些函数的导数,加深理解。
二、导数的性质(20分钟)1. 讲解导数的性质,包括导数的线性性质、导数的和差积商规则等。
2. 强调学生掌握导数的性质对于简化计算很重要。
3. 让学生通过练习题熟练应用导数的性质。
三、求导数的方法(30分钟)1. 讲解求导数的方法,包括一阶导数、高阶导数和隐函数求导等。
2. 让学生通过例题理解各种方法的应用。
3. 分组让学生互相解答并讨论复杂问题的求导过程。
四、应用题解析(20分钟)1. 给学生一些应用题,让他们通过导数的知识解决实际问题。
2. 引导学生分析题目,找出关键信息,确定解题方向。
3. 带领学生一步步解答应用题,强化他们对导数的应用能力。
五、课堂小结(10分钟)1. 回顾本节课所学导数的知识点。
2. 强调学生重复练习导数相关题目,巩固所学知识。
3. 提醒学生预习下节课内容,做好知识的衔接。
教学反思:通过本节导数专题教学,学生对导数的概念、性质和应用有了更深入的了解,掌握了一些求导数的方法,但仍需加强练习,提高应用能力。
下节课将继续进行导数相关知识的拓展和训练。
二、考试要求⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
x的导数)。
掌⑵熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x,lnx, loga握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数。
⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小值。
三、复习目标1.了解导数的概念,能利用导数定义求导数.掌握函数在一点处的导数的定义和导数的几何意义,理解导函数的概念.了解曲线的切线的概念.在了解瞬时速度的基础上抽象出变化率的概念.x的导数)。
2.熟记基本导数公式(c,x m(m为有理数),sin x, cos x, e x, a x, lnx, loga掌握两个函数四则运算的求导法则和复合函数的求导法则,会求某些简单函数的导数,利能够用导数求单调区间,求一个函数的最大(小)值的问题,掌握导数的基本应用.3.了解函数的和、差、积的求导法则的推导,掌握两个函数的商的求导法则。
能正确运用函数的和、差、积的求导法则及已有的导数公式求某些简单函数的导数。
4.了解复合函数的概念。
会将一个函数的复合过程进行分解或将几个函数进行复合。
掌握复合函数的求导法则,并会用法则解决一些简单问题。
四、双基透视导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
5.瞬时速度在高一物理学习直线运动的速度时,涉及过瞬时速度的一些知识,物理教科书中首先指出:运动物体经过某一时刻(或某一位置)的速度叫做瞬时速度,然后从实际测量速度出发,结合汽车速度仪的使用,对瞬时速度作了说明.物理课上对瞬时速度只给出了直观的描述,有了极限工具后,本节教材中是用物体在一段时间运动的平均速度的极限来定义瞬时速度. 6.导数的定义 7.导数的几何意义函数y=f(x)在点0x 处的导数,就是曲线y=(x)在点))(,(00x f x P 处的切线的斜率.由此,可以利用导数求曲线的切线方程.具体求法分两步:(1)求出函数y=f(x)在点0x 处的导数,即曲线y=f(x)在点))(,(00x f x P 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 ))(('000x x x f y y -=-特别地,如果曲线y=f(x)在点))(,(00x f x P 处的切线平行于y 轴,这时导数不存,根据切线定义,可得切线方程为0x x = 8.和(或差)的导数 9.积的导数10.商的导数11. 导数与函数的单调性的关系范例分析例1.⎩⎨⎧>+≤==11)(2x bax x x x f y 在1=x 处可导,则=a =b 例2.已知f(x)在x=a 处可导,且f ′(a)=b ,求下列极限:(1)h h a f h a f h 2)()3(lim 0--+→∆; (2)ha f h a f h )()(lim 20-+→∆例3.观察1)(-='n nnxx ,x x cos )(sin =',x x sin )(cos -=',是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。
例4.(1)求曲线122+=x xy 在点(1,1)处的切线方程; (2)运动曲线方程为2221t tt S +-=,求t=3时的速度。
例5. 求下列函数单调区间 (1)5221)(23+--==x x x x f y (2)x x y 12-=(3)x xk y +=2)0(>k (4)αln 22-=x y例6.求证下列不等式(1))1(2)1ln(222x x x x x x +-<+<- ),0(∞+∈x (2)πxx 2sin >)2,0(π∈x(3)x x x x -<-tan sin )2,0(π∈x例7.利用导数求和:(1); (2)。
例8.求满足条件的a(1)使ax x y +=sin 为R 上增函数 (2)使a ax x y ++=3为R 上…… (3)使5)(23-+-=x x ax x f 为R 上↑例9.(1)),0(∞+∈x 求证x x x x 11ln 11<+<+ (2)N n ∈ 2≥n 求证 11211ln 13121-+++<<+++n n n例10. 设0>a ,求函数),0()(ln()(+∞∈+-=x a x x x f 的单调区间.例11.已知抛物线42-=x y 与直线y=x+2相交于A 、B 两点,过A 、B 两点的切线分别为1l 和2l 。
(1)求A 、B 两点的坐标; (2)求直线1l 与2l 的夹角。
例12.(2001年天津卷)设0>a ,x x eaa e x f +=)(是R 上的偶函数。
(I )求a 的值;(II )证明)(x f 在),0(+∞上是增函数。
例13.(2000年全国、天津卷)设函数ax x x f -+=1)(2,其中0>a 。
(I )解不等式1)(≤x f ;(II )证明:当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数。
例14. 已知0>a ,函数),,0(,1)(+∞∈-=x x ax x f 设ax 201<<,记曲线)(x f y =在点))(,(11x f x M 处的切线为l 。
(Ⅰ)求l 的方程;(Ⅱ)设l 与x 轴的交点为)0,(2x ,证明:①a x 102≤<②若a x 11<,则ax x 121<< 七、强化训练1.设函数f(x)在0x 处可导,则xx f x x f x ∆-∆-→∆)()(lim000等于 ( )A .)('0x fB .)('0x f -C .)('0x f --D .)(0x f -- 2.若13)()2(lim000=∆-∆+→∆xx f x x f x ,则)('0x f 等于 ( )A .32 B .23C .3D .2 3.曲线x x y 33-=上切线平行于x 轴的点的坐标是 ( )A .(-1,2)B .(1,-2)C .(1,2)D .(-1,2)或(1,-2)4.若函数f(x)的导数为f ′(x)=-sinx ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角 D .钝角5.函数5123223+--=x x x y 在[0,3]上的最大值、最小值分别是 ( )A .5,-15B .5,-4C .-4,-15D .5,-166.一直线运动的物体,从时间t 到t+△t 时,物体的位移为△s ,那么tst ∆∆→∆0lim 为( )A .从时间t 到t+△t 时,物体的平均速度B .时间t 时该物体的瞬时速度C .当时间为△t 时该物体的速度D .从时间t 到t+△t 时位移的平均变化率7.关于函数762)(23+-=x x x f ,下列说法不正确的是 ( ) A .在区间(∞-,0)内,)(x f 为增函数 B .在区间(0,2)内,)(x f 为减函数 C .在区间(2,∞+)内,)(x f 为增函数D .在区间(∞-,0)),2(+∞⋃内,)(x f 为增函数8.对任意x ,有34)('x x f =,f(1)=-1,则此函数为 ( )A .4)(x x f =B .2)(4-=x x fC .1)(4+=x x fD .2)(4+=x x f 9.函数y=2x 3-3x 2-12x+5在[0,3]上的最大值与最小值分别是 ( )A.5 , -15B.5 , 4C.-4 , -15D.5 , -16 10.设f(x)在0x 处可导,下列式子中与)('0x f 相等的是 ( ) (1)x x x f x f x ∆∆--→∆2)2()(lim000; (2)x x x f x x f x ∆∆--∆+→∆)()(lim 000;(3)x x x f x x f x ∆∆+-∆+→∆)()2(lim000(4)x x x f x x f x ∆∆--∆+→∆)2()(lim 000。
A .(1)(2)B .(1)(3)C .(2)(3)D .(1)(2)(3)(4)11.(2003年普通高等学校招生全国统一考试(上海卷理工农医类16))f (x )是定义在区间[-c,c]上的奇函数,其图象如图所示:令g (x )=af (x )+b ,则下 列关于函数g (x )的叙述正确的是( )A .若a <0,则函数g (x )的图象关于原点对称.B .若a =-1,-2<b<0,则方程g (x )=0有大于2的实根.C .若a ≠0,b=2,则方程g (x )=0有两个实根.D .若a ≥1,b<2,则方程g (x )=0有三个实根.12.若函数f(x)在点0x 处的导数存在,则它所对应的曲线在点))(,(00x f x 处的切线方程是 13.设xx x f 1)(-=,则它与x 轴交点处的切线的方程为______________。
14.设3)('0-=x f ,则=---→hh x f h x f h )3()(lim000_____________。
15.垂直于直线2x-6y+1=0,且与曲线5323-+=x x y 相切的直线的方程是________. 16.已知曲线xx y 1+=,则==1|'x y _____________。
17.y=x 2e x 的单调递增区间是18.曲线3213+=x y 在点)4,1(3处的切线方程为____________。
19.P 是抛物线2x y =上的点,若过点P 的切线方程与直线121+-=x y 垂直,则过P 点处的切线方程是____________。
20.在抛物线2x y =上依次取两点,它们的横坐标分别为11=x ,32=x ,若抛物线上过点P 的切线与过这两点的割线平行,则P 点的坐标为_____________。