3.3 向量组的线性相关性
- 格式:ppt
- 大小:1.17 MB
- 文档页数:27
判别向量组线性相关性的几种方法方法1 依据下面的结论来判断向量组的线性相关性1)含零向量的向量组一定线性相关2)对应分量成比例的两个向量一定线性相关3)向量组中的某个向量可由其余向量线性表示的一定线性相关4)相关组增加向量仍相关,无关组减少向量仍无关5)无关组添加分量仍无关,相关组减少分量仍相关6)向量组的个数大于向量维数的必线性相关22211=,=1211=1,=223⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭γγββ11线性无关,则仍线性无关22312=1,=21212-1=1,=2=0126⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααααα11线性相关,则,仍线性相关232312-1=1,=2=020126⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭αααααα 11,线性相关,234120-1=1,=0,=0,=31215⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭αααα1线性相关(个数大于维数)方法2 利用向量组线性相关性的定义转化为齐次线性方程组的求解212122122,,,,,...,,,,,=n n n n n nk k k k k k k k k +++⎛⎫ ⎪⎪⇔⇔= ⎪ ⎪⎝⎭ααααααOαααO AK O 111已知列向量组, 设有使得=()齐次线性方程组22,,,,,,n n =⇔=⇔=AK O αααAK O αααAK O 11可利用初等行变换求解齐次线性方程组线性无关只有零解线性相关有非零解例1234213344223344,,,+,+,-,+(2)+,+,,+-αααααααααααααααααααα11111已知向量组线性无关,判断下列向量组的线性相关性(1)122233344414122233344(2)(+)(+)()()()()()()k k k k k k k k k k k k ++++-=-++++++=ααααααααOααααO111设213344+-1++1-+1+=⨯⨯⨯⨯ααααααααO11解(1)0()()()()所以该向量组线性相关234,,,αααα1已知向量组线性无关,有14121234233400000k k k k k k k k k k k k -=⎧⎪+=⎪⇒====⎨+=⎪⎪+=⎩所以线性无关方法3 利用矩阵的秩判断向量组的线性相关性122,,,m n ij m n nm a ⨯⨯⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ββA αααβ 1矩阵=()=()=22,,, ,,,=n n ⇔⇔αααA αααA 11向量组线性相关R ()< n 向量组线性无关R () n22,,,,,,=m m ⇔⇔βββA βββA 11向量组线性相关R ()< m 向量组线性无关R () m例223()3=,,,R =∴A ααα 1向量的个数线性无关23112011201120312504-4504-45201102-310023---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦→→αA αα初等初等1变换变换解 利用初等变换求向量组的秩令=()()()23=1-120,=3125,=2011ααα1判断线性相关性方法4 利用向量组的秩判断线性相关性2222(,,,,,,(,,,,,,n n n n R R ⇔⇔αααααααααααα 1111)< n 线性相关)= n 线性无关22=()(,,,T T n T n R R ⎛⎫ ⎪ ⎪=⎪ ⎪ ⎪⎝⎭ααB B αααα 11 或 , 则)22(,,,),()(,,,n n R R ==A αααA ααα 11令则),2(,,,n R ααα 1) 因此,将(矩阵的秩等于行(列)向量组)转化为的秩矩阵求秩方法5 利用初等变换判断向量组的线性相关性1)初等行变换不改变矩阵列向量组的线性相关性2)初等列变换不改变矩阵行向量组的线性相关性2323,,,,16-3=0=2a a ∴⇔βββγγγB 11线性无关,线性无关R()=3,即,[]23123102102102210-3006-3=31001-601-611301100-5()a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦=→→A βββB B γγγ初等初等变换变1行行换令=,,2310221=,=,=3101-13a a ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭βββ1已知向量组线性无关,求例3解思考题:下面的结论是否正确• 1.线性无关组增加向量仍然线性无关答案:不正确• 2.求向量组的秩时只能用初等行变换答案:不正确THANKS。
§3.1 线性方程组解的判定1.定理3.1:n 元线性方程组AX=b ,其中A=(a 12a 12•••a 1n a 21a 22•••a 2n••••a m1a m2•••a mn),x=( x 1x 2••x n ) ,b=( b 1b 2••b m )(1)无解的充要条件是R(A)<R(A,b);(2)有惟一解的充要条件是R(A)=R(A,b)=n , (3)有无穷多解的充要条件是R(A)=R(A,b)<n.注:(1)R(A,b)先化为行阶梯形,判别。
有解时再化为行最简形求解。
(2)R(A)=m 时,AX=b 有解。
(3)R(A)=r 时,有n-r 个自由未知量,未必是后面n-r 个。
2.定理3.2:n 元线性方程组AX=0(1)有惟一解(只有零解)的充要条件是R(A)=n ; (2)有无穷多解(有非零解)充要条件是R(A)<n .注:(1)m <n,AX=0必有非零解。
3.定理3.3:矩阵方程AX=B 有解的充要条件是R(A)=R(A,B) 求解线性方程组例1. {4x 1+2x 2−x 3=23x 1−x 2+2x 3 =1011x 1+3x 2 =8例2. {2x 1+x 2−x 3+x 4 =14x 1+2x 2−2x 3+x 4=22x 1+x 2 −x 3−x 4 =1例3. 求解齐次线性方程组{3x 1+ 4x 2−5x 3+ 7x 4 =02x 1−3x 2+3x 3− 2x 4 =04x 1+11x 2−13x 3+16x 4=07x 1−2x 2+ x 3+ 3x 4 =0例4.写出一个以X=C 1(2−310)+C 2(−2401)为通解的齐次线性方程组。
例5(每年).(1)λ取何值时,非齐次线性方程组{ λx 1+x 2+x 3=1x 1+λx 2+x 3=λx 1+x 2+λx 3=λ2(1)有惟一解;(2)无解;(3)有无穷多组解?并在有无穷多组解时求出通解.(2)非齐次线性方程组{x 1+x 2+2x 3=02x 1+x 2+ax 3=13x 1+2x 2+4x 3=b当a,b 取何值时,(1)有惟一解;(2)无解;(3)有无穷多组解?并求出通解.例5(12/13学年).设A=(λ110λ−1011λ), b=(a11),已知Ax=b 存在两个不同的解:(1)求λ,a;(2)求Ax=b 的通解。
线性代数3.3向量组线性相关性的判别定理线性代数是数学中的一个分支,它研究向量空间和线性映射等代数结构的性质和规律。
在线性代数中,向量组的线性相关性是一项基本概念。
本文将介绍向量组线性相关性的判别定理。
在数学中,如果存在一组非零向量$\boldsymbol{v}_1,\boldsymbol{v}_2,\cdots,\boldsymbol{v}_n$以及一组不全为零的标量$k_1,k_2,\cdots,k_n$,使得向量组的线性相关性判别定理是指,存在一个简单的方法,可以判断一个向量组是否是线性相关的。
推论:零向量不参与线性相关性的判断但是,如果向量组中包含了零向量,那么零向量不参与线性相关性的判断。
因为任何向量与零向量的线性组合都等于零向量,所以如果向量组中包含了零向量,只有当其他向量出现线性相关性时,才能称向量组是线性相关的。
证明:因为$k_1,k_2,\cdots,k_n$中至少有一个不为零,不妨设$k_1$不为零。
则有因此,向量$\boldsymbol{v}_1$可以表示为其余向量的线性组合。
$$\boldsymbol{v}_i=k_1\boldsymbol{v}_1+k_2\boldsymbol{v}_2+\cdots+k_{i-1}\bold symbol{v}_{i-1}+k_{i+1}\boldsymbol{v}_{i+1}+\cdots+k_n\boldsymbol{v}_n$$将上式代入得到总结向量组的线性相关性是线性代数中的一个重要概念,它与矩阵的秩、行列式、特征值等有密切的关联。
在实际应用中,判断向量组的线性相关性是很有用的,例如在计算机图形学、信号处理、机器学习等领域中,经常需要对向量组进行操作和分析。
通过本文所介绍的向量组线性相关性的判别定理,我们可以更方便地应用向量空间理论解决实际问题。