高斯光束的透镜变换
- 格式:ppt
- 大小:348.50 KB
- 文档页数:16
实验三 高斯光束的透镜变换实验一 实验目的1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.二 实验原理众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:()222()[]2()00,()r z kr i R z A A r z e ez ωψωω---=⋅ (6)式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:()z ωω= (7)000()Z z R z Z Z z ⎛⎫=+ ⎪⎝⎭(8)1ztg Z ψ-= (9) 其中,200Z πωλ=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22()r z e ω-的形式从中心向外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线:2200()1z zZ ωω-= (10)规律而向外扩展,如图四所示高斯光束以及相关参数的定义图四(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:22()r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。
在这个例子中,我们将考虑高斯光束在一个简单的成像系统中的传播。
在第一章中,关联物像平面的ABCD 矩阵可写为⎥⎦⎤⎢⎣⎡-=m f m M /1/10 其中m 为透镜的横向放大率,f 是成像透镜的焦距。
用ABCD 定律,并假设1'==n n ,我们用q 描述物面上的高斯光束,通过透镜后,用q ’描述在像面上的高斯光束m a f m qq 11'+-=使用q 参数,可以方便地把上式分为实部和虚部。
聚焦点'ω和近轴像面的波面曲率半径为ωωm ='10.76mR f Rf m R -=2'10.77从上述关系中可以得出几个结论。
像物聚焦点大小的比率就是近轴横向放大率。
考虑将激光束腰放置在物方平面的情况,这时∞=R 。
将10.77的极值放在这个情况下,可得mf R -='对于正透镜的通常情况,它有实的物距和像距,f 为正,m 为负,因此R ’是正的,按照光束符号惯例表示像空间光束在通过它的近轴像面之前已经通过了它的束腰,例如,束腰位于近轴像的位置。
这种现象叫做“焦移”,因为最大近轴发光点不在几何焦点处。
为了在近轴像面处得到光束束腰(∞='R )我们必须在物面处有m f R /=。
焦移现象对于有很小发散角的“慢”光束而言更生动,换句话说,对于有小的菲涅尔数的光束而言。
(孔径半径为a 和波前曲率半径为R 的菲涅尔数为R a λ/2)。
我们可以用OSLO中的交互式ABCD 分析数据表来阐明这一现象。
我们在目录数据库中选择一个焦距为500mm 的透镜,用近轴设置数据表来设置近轴放大率为-1。
将主波长设为0.6328m μ,在设置放大率前删除波长2和3,如下图所示使用交互式ABCD 分析表,我们可以考察穿过这个透镜的高斯光束。
用束腰直径为0.25mm ,束腰离第0面距离为0。
在OSLO 中使用高斯光束数据表时有几个惯例:1 使用这个数据表,你必须在4个区域(w,w0,z,R )中的两个中添入数据。
高斯光束经透镜的衍射效应
高斯光束经过透镜会产生衍射效应,这是因为透镜具有衍射特性,能够改变光束的传播方向和光强分布。
当高斯光束通过透镜时,透镜会使光束发生聚焦或发散的作用,这会导致光束的衍射效应增强或减弱。
衍射效应的具体表现是,透镜作为一个光学元件对不同波长的光束具有不同的聚焦作用,从而导致经透镜后的光束的相位和振幅分布发生改变。
具体来说,高斯光束的经过透镜后,会发生以下变化:
1. 焦距:透镜会将光束聚焦到一点或发散开来。
光束聚焦或发散的程度取决于透镜的焦距大小和入射光束的直径。
2. 相位分布:透镜会改变光束的相位分布,导致经过透镜后的光束具有不同的相位延迟。
这会影响光束的相干性和干涉效应。
3. 振幅分布:透镜会改变光束的振幅分布,使得经过透镜后的光束在空间中的分布发生变化。
这会导致出现衍射斑、光晕或其他特殊的光强分布。
总之,高斯光束经透镜的衍射效应是由于透镜对光束进行聚焦或发散的作用,导致光束的相位和振幅分布发生改变。
这个衍射效应在光学系统设计和光束加工中具有重要的应用和影响。
理论分析:透镜对高斯光束的变换沿z 轴传播的基模高斯光束,以其束腰位置为原点,等相位面的光斑半径由下式[1]确定:w(z)=w0√1+(z/f)2 (1)式中, w0为基模高斯光束的束腰半径, f为高斯光束的共焦参数,且f=πw02/λ。
基模高斯光束在自由空间传播时是由束腰逐渐向两边发散的,发散程度用发散角θ0来衡量,其定义[1 ]为:θ0=limz→∞2w(z)z=2λπw0(2)如果高斯光束在空间传输时遇到透镜,光束参数就要改变。
图1 所示为透镜对高斯光束的变换。
图中, w0为入射高斯光束束腰半径, w0′为出射高斯光束束腰半径, l为w0与透镜L 的距离, l′为w0′与透镜L 的距离。
它们之间满足下面关系[1 ] :w0′=0√(F−l)2+f02(3)l′=F+(l−F)F2(l−F)z+f02(4)式中, F 为透镜的焦距,λ为高斯光波长。
(3) 式、(4) 式表征了高斯光束的成像规律,即物高为2w0 ,物距为l的高斯光束经过焦距为F 的透镜的变换规律。
由(3) 式可看出,像方束腰半径w0′由物方束腰半径w0、焦距F、物距l及共焦参数f0共同决定。
为方便地研究w0′随各变量的变化,可进行归一化处理,从而得到:w0′w0=1(l∕F−1)2+(f0∕F)2按上式作出相应曲线[2 ] 。
图2 所示为归一化束腰半径随归一化物距的变化。
Fig. 2 Changing curves of normalized Gaussian waist for several parameters。