3.10_高斯光束的传输与透镜变换
- 格式:ppt
- 大小:546.50 KB
- 文档页数:22
实验三 高斯光束的透镜变换实验一 实验目的1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.二 实验原理众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:()222()[]2()00,()r z kr i R z A A r z e ez ωψωω---=⋅ (6)式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:()z ωω= (7)000()Z z R z Z Z z ⎛⎫=+ ⎪⎝⎭(8)1ztg Z ψ-= (9) 其中,200Z πωλ=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22()r z e ω-的形式从中心向外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线:2200()1z zZ ωω-= (10)规律而向外扩展,如图四所示高斯光束以及相关参数的定义图四(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:22()r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。
球面折射系统对高斯光束的变换和传输模拟秦华;张爽;李文瑞;魏功祥;刘云燕【摘要】为研究高斯光束在厚透镜中的传输特性,由几何光学处理傍轴光线的方法,理论上推导了高斯光束的物像束腰位置以及物像束腰半径间的关系,并由高斯光束传输光线就是单叶双曲面直母线的假设,光线追迹模拟了高斯光束在透镜系统的传输过程.模拟结果表明,当物高斯光束束腰位置与透镜系统物方焦点的距离远大于高斯光束的共焦参数时,用几何光学傍轴光线方法所得到的高斯光束束腰位置和半径的理论结果与光线追迹得到的高斯光束束腰位置和半径模拟结果一致,否则,光线追迹模拟结果不正确.【期刊名称】《大学物理》【年(卷),期】2017(036)002【总页数】8页(P11-17,54)【关键词】高斯光束;球面折射系统;光线追迹;传输模拟【作者】秦华;张爽;李文瑞;魏功祥;刘云燕【作者单位】山东理工大学理学院,山东淄博255000;山东理工大学理学院,山东淄博255000;山东理工大学理学院,山东淄博255000;山东理工大学理学院,山东淄博255000;山东理工大学理学院,山东淄博255000【正文语种】中文【中图分类】O439【DOI】10.16854/ki.1000- 0712.2017.02.004高斯光束与普通球面波具有不同的传输特性,对此,文献[1]有详细的理论证明和公式推导. 但是,如果将物、像高斯光束的束腰与几何光学中的物和像相比较,则当满足物高斯光束束腰与薄透镜的物方焦点距离远大于高斯光束的共焦参数时,可以用几何光学中处理傍轴光线的方法处理高斯光束在透镜系统中的传输问题[2,3]. 这里所说的方法主要指用高斯成像公式处理物像束腰位置以及物像束腰半径之间的关系.然而,高斯光束在厚透镜系统中传输是否也遵循以上原则,能否用光线追迹方法处理高斯光束在光学系统的传输,文献[1]却没有给出,查阅最新的文献资料也未见对此问题的相关报道.本文给出了用傍轴光线方法处理高斯光束在厚透镜光学系统中传输的理论推导,用光线追迹实例证明了物高斯光束束腰距离光学系统物方焦点较远时,光线传输模拟与理论推导很好的相符,反之,则有很大的差别.在光线追迹模拟过程中也碰到了一些局部模拟不正确但整体模拟正确的问题,并给出了粗略的解释,抛砖引玉,希望能引起读者的思考.1.1 球面波的物像矩阵和物像关系本文利用矩阵方法研究共轴球面系统的光学性质.主要通过两个物理量研究光线在系统中的传输,一是光线上某点离光轴的距离y,称为射高,另一个是光线传播方向与光轴的夹角u,称为射角.光线通过某一点的状态用(y,nu)表示,n为光线上某一点所在介质的折射率.符号规定: y在主光轴上方为正,反之为负,光线转向主光轴或平行主光轴直线形成的锐角,逆时针为正,反之为负.如图1所示,入射光线上的一点Q距离光学系统第一个面顶点的轴向距离为l,Q 点的光线状态,其出射光线上的Q′点距离系统最后一个面顶点的轴向距离为l′,Q′点的光线状态,规定l、l′在顶点左侧为负,右侧为正.则有物像转换关系的矩阵称为物像矩阵,亦称为ABCD矩阵,由式(1)可得复杂理想共轴光学系统可以用一对焦点F、F′和一对主平面H、H′来代表,如图2所示.设a点和b点的状态分别为(r1,θ1)和(r2,θ2), 则根据理想光学系统中一些典型光线的传输特性可知:r2=r1,θ2-θ1=r1/f′=-r1/f,两式合并成矩阵形式为因此,用一对焦点和一对主平面代表的复杂光学系统的传递(或变换)矩阵为其物像矩阵ABCD为设物像点状态分别为(r物,θ物)、(r像,θ像), 则由于r像与θ物无关,所以从上式中可以导出,与薄透镜的成像公式相同.1.2 出射高斯光束的束腰大小及位置计算公式高斯光束——曲率中心和曲率半径R不断改变的球面波,只要把普通球面波中的曲率半径R换为高斯光束的复参数q,那么高斯光束就与普通球面波有类似传播规律. 高斯光束的q参数定义为q参数将高斯光束传播方向上的光斑半径ω及等相位面曲率半径R两个重要参数统一在一个表达式中.假定入射高斯光束的q参数qin,输出光束的q参数qout,在薄透镜中,qout与qin满足如下关系:在厚透镜及复杂光学系统中同样满足上述关系,推导如下.如图3所示,当傍轴球面波通过焦距为f的光学系统时,其位于物像主平面H和H′上的波前曲率半径R1和R2满足关系,用ω1和ω2分别表示在物像主平面上的高斯光束光斑半径,由于物像主平面的垂轴放大率为1,所以ω1=ω2.根据高斯光束q参数定义式(7),物像主平面上q参数分别为和,把式和ω1=ω2代入得与式(8)对比可以看出,不论在薄透镜还是在复杂光学系统中,高斯光束的q参数起着与普通球面波R 同样的作用.q参数与普通球面波的物像转换矩阵ABCD之间还满足下列关系[4-6]:设入出射高斯光束的光腰分别为ω01、ω02,光腰处光束复参数分别为q1和q2,则q1和q2满足式(10):其中则即把式(2)中的A、B、C和D的值代入式(11)中的第二式得上式中,l为入射高斯束腰距离光学系统第一个面顶点的距离,l′为出射高斯束腰距离系统最后一个面顶点的距离,规定:l、l′在顶点左侧为负,右侧为正. 整理上式得从上式可知,已知光学系统的结构参数和入射高斯光束束腰位置l,就可以得到出射高斯光束束腰位置l′.复杂光学系统可以简化为一对焦点和一对主平面,如图2所示,其传递矩阵如式(4),把式(4)代入到式(12)中,并令m=1,得当满足条件:式(13)变为,整理后得这正是几何光学系统中的成像公式,说明只要满足式(14),高斯光束在复杂光学系统传输时,物像高斯光束束腰的位置可以用几何光学的成像公式决定.把式(2)中的A、B、C和D的值代入到式(11)中的第一式得整理得由上式可以计算出出射高斯光束束腰位置处的光斑半径ω02.设入射高斯光束波长λ,束腰半径为ω01,通过一焦距为f的薄透镜时,当满足式(14)时[1,7] ,可以用几何光学中处理傍轴光线的方法来处理高斯光束,式(14)中为对称共焦腔两镜的焦距,定义为入射高斯光束的共焦参数. 式(14)要求入射高斯光束束腰位置与透镜物方焦点的距离远大于高斯光束的共焦参数,即要求高斯光束束腰与透镜物方焦点相距足够远.由于/λ)2一般较小,式(14)容易满足.式(13)—式(15)已经证明,只要满足式(14),高斯光束在厚透镜及复杂光学系统中传输也可以用几何光学中处理傍轴光线的方法来处理,这意味着满足式(14)时可以用光线追迹方法模拟高斯光束在复杂光学系统的传输.下面章节给出了用光线追迹方法模拟高斯光束在不同光学系统中传输实例,证明了物高斯光束束腰距离光学系统物方焦点较远时,光线追迹方法模拟光束传输与理论公式(12)、(15)计算结果相符,反之,则有很大的差别.高斯光束可认为是一双曲面体,由大小不同的共轴单叶双曲面构成,高斯光束的传输光线就是单叶双曲面的直母线[8]. 假定高斯束腰截面垂直于x轴,在束腰截面内按高斯分布取足够多个坐标点P0(y0,z0),过这些坐标点的高斯光束光线沿下列两条直线传播.直线1:y=y0+z0C, z=z0-y0C, x=x直线2:y=y0-z0C, z=z0+y0C, x=x下面用以上所述方法分别模拟高斯光束在单折射球面上、单透镜上和三透镜光学系统上的传输变换过程.假定激光波长λ=1 550 nm,高斯光束的束腰半径ω01=0.031 mm,参数.2.1 高斯光束通过单个折射球面时的光路模拟单折射球面半径r=15 mm(说明:为方便,以下长度单位mm仅在图表中标出),球面两侧折射率分别为n=1.0和n′=1.500 222. 根据几何光学理论有, 当l→∞, ,当.由此得折射面的物方焦距和像方焦距分别为f=-29.986 7,f′=44.986 7. 单个折射面的折射矩阵为,其中.代入式(12)并整理得图4是由式(19)得到的出射光束束腰与入射光束束腰之间的位置关系曲线.从图4可以看出,与薄透镜的变换曲线相类似,l′存在最大值和最小值,且有两个0点,当l=-31.934 3时,l′=391.275 0,l′达到最大值;当l=-28.038 9时,l′=-301.304 1,l′达到负最大值;l=-29.859 64和-0.127 03时,l′两次为0值;当l=0时,l′=0.189 0.与普通光束不同,当入射光束束腰位于物方焦点处,即当l=f=-29.986 7时,出射光束束腰位于像方焦点处,即l′=44.991 7.图5是入射高斯光束束腰距离单球面顶点不同距离时,用光线追迹方法模拟高斯光束经球面折射的光束传输过程. 图5(a)为l=-30时的光束模拟,用式(19)计算得l′=29.733 2,而光线模拟l′>>29.733 2, 模拟不正确,说明出射光束束腰的位置不能用光线追迹方法正确模拟出. 这是因为(l-f)2=[-30-(-29.986 7)]2<3.793 9,不符合式(14). 图5(b)、(c)中,l分别等于200、44.986 7,根据式(19)计算分别得l′=39.121 5和26.985 0. 从图中可以看出,光线模拟结果与式(19)的计算结果很好相符,这是因为此时的入射高斯束腰位置与物方焦点的距离符合式(14).用式(16)可以计算出射高斯光束束腰处的光斑半径,当 l=44.986 7,即入射高斯光束束腰位于像方焦点时,计算得到出射高斯光束束腰半径0.012 4. 图6是用光线模拟方法得到的出射高斯光束束腰光斑图,从图6中可以看出,模拟的光斑半径与用式(16)计算结果相符,说明只要符合条件(14),就可以用光线方法模拟高斯光束在折射面上的传输.2.2 当高斯光束通过单个透镜(两个球面围成)时的光路模拟透镜两个球面半径分别为r1=15和r2=-15,两球面顶点之间距离d=3,透镜折射率为n=1.500 222. 根据几何光学理论,此透镜前后两个面的物方焦点位置和像方焦点位置分别为图7是此单透镜的基点基面示意图,透镜的物方焦距和像方焦距分别为f=-15.510 5,f′=15.510 5,.透镜的折射矩阵为,把矩阵中的各元素代入到式(12)、(16)中,可得到l′与l 、ω02与ω01 之间的关系式.图8是l′随l变化的曲线,图中曲线与单折射面和薄透镜中的l′、l曲线相似,说明球面折射系统对于高斯光束有相似的变换性质. 根据文献[1], 当光束束腰位于物方焦点附近时,其传播特性与普通光有很大区别;当光束束腰远离物方焦点时,其传输特性与普通光束近似,可以用处理普通光束折射的方法处理高斯光束.图9示出了入射高斯光束束腰距离单透镜物方焦点不同距离时,用光线追迹方法模拟高斯光束经单透镜的传输过程. 图9(a)—图9(d)是不同l时的光束传输模拟,用式(12)计算,l′分别为17.288 7、12.375 2、29.745 9、45.452 5. 图9(a)—图9(c)与计算结果相符,因为这三种情况下,入射光束束腰与透镜物方焦点的距离平方远远大于共焦参数的平方. 图9(d)的模拟结果与计算结果不符,因为(l-lF)2=[-15-(-14.476 2)]2<3.793 9.值得一提的是,图9(c)中,入射光束束腰位于球面r1顶点左侧29.986 7,正好位于透镜第一面的物方焦点上,但并不在透镜的物方焦点上,光线追迹方法模拟结果却是正确的. 如果透镜的两个面分别用光线追迹方法模拟的话,第一个面的模拟结果肯定不正确,但是对于整个透镜而言,由于(l-lF)2=[-29.986 7-(-14.4762)]2>>3.793 9,整体模拟结果却是正确的. 一般来说,局部错误会导致整体错误,但是图9(c)的局部错误为什么没有导致整体错误呢?出现这种情况的原因在2.3节中有一个大体解释.图10是l=-100时,出射光束束腰处的光斑模拟. 从模拟结果可以看出,出射光束束腰处的光强分布还是高斯分布,且束腰处的光斑半径与用式(16)计算结果0.005 6相近. 这从光强分布的角度说明满足式(14)是可以用光线追迹方法处理高斯光束经过球面折射系统的传输.2.3 当高斯光束通过三个透镜组成的系统时光路模拟三透镜系统的结构数据如表1.由系统的结构参数可以求出系统的传递矩阵S如式(20),系统的基点如图11所示. .把式(20)代入式(12)和式(16)中,得到l′、ω02与l的一组数据如表2,其中,l=-45.946 3为入射光束束腰在三透镜系统的物方焦点上,与式(14)不相符,其余三组数据与式(14)相符.图12为高斯光束通过三透镜系统的传输模拟,从模拟结果看,(a)、(c)、(d)中束腰位置与计算结果相符,(b)中束腰位置与计算结果不符.图12(c)中的入射光束束腰位于第一个透镜的物方焦点上,但并不位于整个三镜系统的焦点上,对于第一个透镜来说不能用光线追迹方法正确模拟高斯光束在透镜中的传播,对于整个三镜系统来说却能够用光线追迹方法正确模拟高斯光束在透镜系统的传播. 按正常推理,系统中部分不能用光线追迹正确模拟,那么整体就不能用光线追迹正确模拟,但图12(c)显示局部用光线追迹方法不能正确模拟激光光束的传输,整体却能用光线追迹方法正确的模拟光束传输. 如何解释这个现象呢?本文认为,在满足式(14)时,“高斯光束传输光线就是单叶双曲面的直母线”的假设可以正确的模拟高斯光束经过透镜系统的传输特性. 图12(c)中当入射光束束腰位于第一个透镜的物方焦点上时,按光线追迹方法,光束变为一近似平行光束,此近似平行光束可以认为是束腰在无穷远处的高斯光束,对于第一个透镜以后的系统来说,此光束束腰位置又能满足式(14),所以对于整个光学系统来说,光线追迹方法又能正确的模拟高斯光束传输特性.图13是l=-100,出射光束束腰处的光强分布模拟. 模拟结果显示,出射光束束腰处(l′=348.712 0)的光强还是高斯分布,模拟的光斑半径与用式(16)计算结果(0.045 2)在同一数量级. 但还是有所差别,本文认为这样的差别在于三镜系统存在像差,而式(16)却是近轴近似下推导出的公式,所以模拟结果与计算结果有所差别. 本文用矩阵方法推导了厚透镜系统在近轴条件下物像转换矩阵,并使由厚镜系统结构参数(r,d,n)计算物像转换矩阵程序化. 由于高斯光束q参数也遵循这个物像转换矩阵,由此导出了入射高斯光束经过球面系统折射后出射高斯光束束腰位置(l′)及束腰半径(ω02)随入射高斯光束束腰位置(l)的计算公式.用光线传输的方法模拟了高斯光束在单球面、单透镜、三透镜系统的传输过程,模拟证明了当物高斯光束束腰与透镜系统物方焦点的距离远大于高斯光束的共焦参数时,可以用几何光学中处理傍轴光线的方法处理高斯光束在透镜系统中的传输问题. 当束腰至物方焦点距离不远大于共焦参数时,模拟结果不正确.【相关文献】[1] 周炳琨,高以智,陈倜荣.激光原理[M].5版. 北京:国防工业出版社, 2014:74-88.[2] Antonín Miks, Pavel Novák. Paraxial properties of two-element zoom systems for Gaussian beam transformation[J]. Optik, 2015, 126: 4249-4253.[3] Xinyue Du, Daomu Zhao. Propagation of elliptical cosh-Gaussian beams in a misaligned optical system[J]. Optics & Laser Technology, 2008,40:194-200.[4] 吕百达. 激光光学——激光束的传输变换和光束质量控制[M].成都:四川大学出版社,1992:92-97.[5] 王彦斌,陈前荣,李华,等. 激光在高光谱相机光学系统中的传输[J]. 红外与激光工程,2015,44 (11):3250-3255.[6] Wei Wen, Xiuxiang Chu. Propagation of symmetric tunable dual airy beam through ABCD optical system[J]. Optics Communications, 2014,333: 38-44.[7] Marcuse D.Light Transmission Optics[M]. New York: Van Nostrand Reinhold, Co., 1982:150-155.[8] 张凤生.非球面系统中高斯光束传输的数值计算[J].光学学报,2008, 28(1):179-183.。
理论分析:透镜对高斯光束的变换沿z 轴传播的基模高斯光束,以其束腰位置为原点,等相位面的光斑半径由下式[1]确定:w(z)=w0√1+(z/f)2 (1)式中, w0为基模高斯光束的束腰半径, f为高斯光束的共焦参数,且f=πw02/λ。
基模高斯光束在自由空间传播时是由束腰逐渐向两边发散的,发散程度用发散角θ0来衡量,其定义[1 ]为:θ0=limz→∞2w(z)z=2λπw0(2)如果高斯光束在空间传输时遇到透镜,光束参数就要改变。
图1 所示为透镜对高斯光束的变换。
图中, w0为入射高斯光束束腰半径, w0′为出射高斯光束束腰半径, l为w0与透镜L 的距离, l′为w0′与透镜L 的距离。
它们之间满足下面关系[1 ] :w0′=0√(F−l)2+f02(3)l′=F+(l−F)F2(l−F)z+f02(4)式中, F 为透镜的焦距,λ为高斯光波长。
(3) 式、(4) 式表征了高斯光束的成像规律,即物高为2w0 ,物距为l的高斯光束经过焦距为F 的透镜的变换规律。
由(3) 式可看出,像方束腰半径w0′由物方束腰半径w0、焦距F、物距l及共焦参数f0共同决定。
为方便地研究w0′随各变量的变化,可进行归一化处理,从而得到:w0′w0=1(l∕F−1)2+(f0∕F)2按上式作出相应曲线[2 ] 。
图2 所示为归一化束腰半径随归一化物距的变化。
Fig. 2 Changing curves of normalized Gaussian waist for several parameters。