高斯光束的透镜变换实验 免费哦
- 格式:doc
- 大小:129.50 KB
- 文档页数:4
一、实验目的1. 理解高斯光束的基本特性。
2. 掌握高斯光束的生成和传播方法。
3. 通过实验验证高斯光束的聚焦特性。
4. 学习光学元件的使用和调整方法。
二、实验原理高斯光束是一种在空间中具有高斯分布的光束,其光强分布呈高斯函数形式。
高斯光束在传播过程中,光束横截面上的光强分布保持不变,但光束的半径随传播距离增加而增大。
高斯光束具有以下特点:1. 光强分布呈高斯函数形式,光强在中心最强,边缘最弱。
2. 光束在传播过程中,光束半径随传播距离增加而增大。
3. 高斯光束具有聚焦特性,可以在一定条件下实现聚焦。
本实验通过实验装置生成高斯光束,观察光束在传播过程中的变化,验证高斯光束的聚焦特性。
三、实验仪器与设备1. 高斯光束发生器2. 光具座3. 激光二极管(LD)4. 光电探测器5. 透镜6. 光阑7. 分束器8. 滤光片9. 光纤10. 记录仪四、实验步骤1. 将激光二极管(LD)固定在光具座上,调整其输出光束的平行度。
2. 将光阑置于激光二极管与透镜之间,调整光阑的孔径,使光束通过光阑后成为高斯光束。
3. 将透镜置于光阑与光电探测器之间,调整透镜的位置,使高斯光束经过透镜后聚焦。
4. 打开记录仪,记录光电探测器接收到的光强分布。
5. 改变透镜的位置,观察光束聚焦效果,记录不同位置下的光强分布。
6. 将光纤连接到光电探测器,观察光纤输出端的光强分布。
五、实验结果与分析1. 通过调整光阑孔径,成功生成高斯光束。
2. 通过调整透镜位置,验证了高斯光束的聚焦特性。
3. 光电探测器接收到的光强分布呈高斯函数形式,与理论相符。
4. 随着透镜位置的移动,光束聚焦效果逐渐变差,说明高斯光束在传播过程中存在发散。
六、实验总结1. 通过本次实验,掌握了高斯光束的生成和传播方法。
2. 验证了高斯光束的聚焦特性,加深了对光学原理的理解。
3. 提高了实验操作技能,为后续光学实验打下了基础。
七、实验注意事项1. 实验过程中,注意调整光学元件的位置,确保光束质量。
在这个例子中,我们将考虑高斯光束在一个简单的成像系统中的传播。
在第一章中,关联物像平面的ABCD 矩阵可写为⎥⎦⎤⎢⎣⎡-=m f m M /1/10 其中m 为透镜的横向放大率,f 是成像透镜的焦距。
用ABCD 定律,并假设1'==n n ,我们用q 描述物面上的高斯光束,通过透镜后,用q ’描述在像面上的高斯光束m a f m qq 11'+-=使用q 参数,可以方便地把上式分为实部和虚部。
聚焦点'ω和近轴像面的波面曲率半径为ωωm ='10.76mR f Rf m R -=2'10.77从上述关系中可以得出几个结论。
像物聚焦点大小的比率就是近轴横向放大率。
考虑将激光束腰放置在物方平面的情况,这时∞=R 。
将10.77的极值放在这个情况下,可得mf R -='对于正透镜的通常情况,它有实的物距和像距,f 为正,m 为负,因此R ’是正的,按照光束符号惯例表示像空间光束在通过它的近轴像面之前已经通过了它的束腰,例如,束腰位于近轴像的位置。
这种现象叫做“焦移”,因为最大近轴发光点不在几何焦点处。
为了在近轴像面处得到光束束腰(∞='R )我们必须在物面处有m f R /=。
焦移现象对于有很小发散角的“慢”光束而言更生动,换句话说,对于有小的菲涅尔数的光束而言。
(孔径半径为a 和波前曲率半径为R 的菲涅尔数为R a λ/2)。
我们可以用OSLO中的交互式ABCD 分析数据表来阐明这一现象。
我们在目录数据库中选择一个焦距为500mm 的透镜,用近轴设置数据表来设置近轴放大率为-1。
将主波长设为0.6328m μ,在设置放大率前删除波长2和3,如下图所示使用交互式ABCD 分析表,我们可以考察穿过这个透镜的高斯光束。
用束腰直径为0.25mm ,束腰离第0面距离为0。
在OSLO 中使用高斯光束数据表时有几个惯例:1 使用这个数据表,你必须在4个区域(w,w0,z,R )中的两个中添入数据。
第1篇一、实验目的1. 加深对高斯光束物理图像的理解;2. 学会对描述高斯光束传播特性的主要参数,即光斑尺寸、远场发散角的测量方法进行掌握;3. 学习体会运用微机控制物理实验的方法。
二、实验原理1. 高斯光束的传播特性高斯光束的振幅在传播平面上呈高斯分布,近场时近似为平面波,远场时近似为球面波。
高斯光束的振幅分布公式为:\[ I(r, z) = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \]其中,\( I(r, z) \) 为距离光轴距离为 \( r \) 处,距离光束传播方向为 \( z \) 处的光强;\( I_0 \) 为光束中心处的光强;\( w_0 \) 为光束中心处的光斑尺寸。
光斑尺寸 \( w(z) \) 与光束中心处的光斑尺寸 \( w_0 \) 的关系为:\[ w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_r}\right)^2} \]其中,\( z_r \) 为光束的瑞利长度。
2. 发散角的定义及测量光束的全发散角定义为光束中光强下降到中心光强的 \( 1/e \) 位置时,光束边缘与光轴所成的角度。
在远场情况下,光束的全发散角近似为:\[ \theta = \frac{1.22 \lambda}{w(z)} \]其中,\( \lambda \) 为光束的波长。
三、实验仪器与设备1. 激光器:输出波长为 \( \lambda = 632.8 \) nm 的红光激光;2. 凹面镜:曲率半径为 \( R = 50 \) cm;3. 平面镜:用于反射激光;4. 光电探测器:用于测量光强;5. 数据采集卡:用于采集光电探测器数据;6. 计算机:用于处理实验数据。
四、实验步骤1. 将激光器输出光束照射到凹面镜上,使光束经凹面镜反射后形成高斯光束;2. 将光电探测器放置在凹面镜后的某个位置,调整探测器位置,使探测器接收到的光强最大;3. 记录探测器接收到的光强 \( I \);4. 根据公式 \( I = I_0 \exp\left(-\frac{2r^2}{w_0^2(z)}\right) \) 求解光斑尺寸 \( w_0 \);5. 根据公式 \( \theta = \frac{1.22 \lambda}{w(z)} \) 求解发散角\( \theta \);6. 重复步骤 3-5,改变探测器位置,记录不同位置的光强 \( I \) 和发散角\( \theta \)。
理论分析:透镜对高斯光束的变换沿z 轴传播的基模高斯光束,以其束腰位置为原点,等相位面的光斑半径由下式[1]确定:w(z)=w0√1+(z/f)2 (1)式中, w0为基模高斯光束的束腰半径, f为高斯光束的共焦参数,且f=πw02/λ。
基模高斯光束在自由空间传播时是由束腰逐渐向两边发散的,发散程度用发散角θ0来衡量,其定义[1 ]为:θ0=limz→∞2w(z)z=2λπw0(2)如果高斯光束在空间传输时遇到透镜,光束参数就要改变。
图1 所示为透镜对高斯光束的变换。
图中, w0为入射高斯光束束腰半径, w0′为出射高斯光束束腰半径, l为w0与透镜L 的距离, l′为w0′与透镜L 的距离。
它们之间满足下面关系[1 ] :w0′=0√(F−l)2+f02(3)l′=F+(l−F)F2(l−F)z+f02(4)式中, F 为透镜的焦距,λ为高斯光波长。
(3) 式、(4) 式表征了高斯光束的成像规律,即物高为2w0 ,物距为l的高斯光束经过焦距为F 的透镜的变换规律。
由(3) 式可看出,像方束腰半径w0′由物方束腰半径w0、焦距F、物距l及共焦参数f0共同决定。
为方便地研究w0′随各变量的变化,可进行归一化处理,从而得到:w0′w0=1(l∕F−1)2+(f0∕F)2按上式作出相应曲线[2 ] 。
图2 所示为归一化束腰半径随归一化物距的变化。
Fig. 2 Changing curves of normalized Gaussian waist for several parameters。
实验三 高斯光束的透镜变换实验一 实验目的1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.二 实验原理众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:()222()[]2()00,()r z kr i R z A A r z e ez ωψωω---=⋅ (6) 式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:()z ωω=(7)000()Z z R z Z Z z ⎛⎫=+ ⎪⎝⎭(8)1ztg Z ψ-= (9) 其中,200Z πωλ=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22()r z e ω-的形式从中心向外平滑的减小,因而光斑半径()z ω随坐标z 按双曲线:2200()1z zZ ωω-= (10)规律而向外扩展,如图四所示高斯光束以及相关参数的定义图四(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:22()r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()Z ω。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。
实验三 高斯光束的透镜变换实验
一 实验目的
1.熟悉高斯光束特性。
2.掌握高斯光束经过透镜后的光斑变化。
3.理解高斯光束传输过程.
二 实验原理
众所周知,电磁场运动的普遍规律可用Maxwell 方程组来描述。
对于稳态传输光频电磁场可以归结为对光现象起主要作用的电矢量所满足的波动方程。
在标量场近似条件下,可以简化为赫姆霍兹方程,高斯光束是赫姆霍兹方程在缓变振幅近似下的一个特解,它可以足够好地描述激光光束的性质。
使用高斯光束的复参数表示和ABCD 定律能够统一而简洁的处理高斯光束在腔内、外的传输变换问题。
在缓变振幅近似下求解赫姆霍兹方程,可以得到高斯光束的一般表达式:
()2
2
2()
[
]2()
00
,()
r z kr i R z A A r z e e
z ωψωω---=
⋅ (6)
式中,0A 为振幅常数;0ω定义为场振幅减小到最大值的1e 的r 值,称为腰斑,它是高斯光束光斑半径的最小值;()z ω、()R z 、ψ分别表示了高斯光束的光斑半径、等相面曲率半径、相位因子,是描述高斯光束的三个重要参数,其具体表达式分别为:
()z ωω= (7)
000()Z z R z Z Z z ⎛⎫
=+ ⎪⎝⎭
(8)
1
z
tg Z ψ-= (9) 其中,2
00Z πωλ
=,称为瑞利长度或共焦参数(也有用f 表示)。
(A )、高斯光束在z const =的面内,场振幅以高斯函数22
()
r z e ω-的形式从中心向外平滑的减小,
因而光斑半径()z ω随坐标z 按双曲线:
22
00
()1z z
Z ωω-= (10)
规律而向外扩展,如图四所示
高斯光束以及相关参数的定义
图四
(B )、 在(10)式中令相位部分等于常数,并略去()z ψ项,可以得到高斯光束的等相面方程:
2
2()
r z const R z += (11) 因而,可以认为高斯光束的等相面为球面。
(C )、瑞利长度的物理意义为:当0z Z =时,00()2Z ωω=。
在实际应用中通常取0z Z =±范围为高斯光束的准直范围,即在这段长度范围内,高斯光束近似认为是平行的。
所以,瑞利长度越长,就意味着高斯光束的准直范围越大,反之亦然。
(D )、高斯光束远场发散角0θ的一般定义为当z →∞时,高斯光束振幅减小到中心最大值1e 处与z 轴的交角。
即表示为:
00
()
lim
z z z
ωθλ
πω→∞
== (12)
高斯光束可以用复参数q 表示,定义2111
i q R πω
=-,由前面的定义,可以得到0q z iZ =+,因而(6)式可以改写为
2200(,)kr q
iZ A r q A e q
-= (13)
此时,
11Re()R q =,211Im()q
πωλ=-。
高斯光束通过变换矩阵为A B M C D ⎛⎫
= ⎪⎝⎭的光学系统后,其复参数2q 变换为:
121Aq B
q Cq D
+=+ (14)
因而,在已知光学系统变换矩阵参数的情况下,采用高斯光束的复参数表示法可以简洁快速的求得变换后的高斯光束的特性参数。
三、实验仪器
He-Ne 激光器, 光学导轨, 光电二极管, CCD , CCD 光阑,偏振片,高斯光束变换透镜组件, 图像采集卡、BEAMVIEW 光束分析与测量软件
四 实验内容:
高斯光束的变换矩阵
(1)将He-Ne 激光器开启,调整高低和俯仰,使其输出光束与导轨平行。
可通过前后移动一个带小孔的支杆实现。
(2)启动计算机,运行BeamView 激光光束参数测量软件。
(3)He-Ne 激光器输出的光束测定及模式分析。
使激光束垂直入射到CCD 靶面上,在软件上看到形成的光斑图案,在CCD 前的CCD 光阑中加入适当的衰减片。
可利用激光光束参数测量软件分析激光束的模式,判定其输出的光束为基模高斯光束还是高阶横模式(作为前面模式分析实验内容的一部分)。
(4)由图像确定He-Ne 激光器输出是基模光斑。
前后移动CCD 探测器,利用激光光束参数测量软件观测不同位置的光斑大小,光斑最小位置处即是激光束的束腰位置。
(5)在光斑束腰位置后面L1处放置一透镜,观察透镜后激光光束的变化情况,并测量处透镜后的束腰位置及光斑大小, (6)由式(14)给出A B M C D ⎛⎫
=
⎪⎝⎭
变换矩阵。
注意事项:射入CCD 的激光不能太强,以免烧坏芯片。
思考题:
实验测量的变换矩阵与理论值的差异主要来源于那些地方?。