常用的傅里叶变换+定理+各种变换的规律(推荐)
- 格式:pdf
- 大小:657.11 KB
- 文档页数:23
傅里叶变换常用公式大全傅里叶变换是一种重要的数学工具,用于将信号从时域转换到频域。
在信号处理、图像处理和通信领域广泛应用。
本文将介绍一些傅里叶变换中常用的公式,以帮助读者更好地理解和应用傅里叶变换。
1. 傅里叶变换的定义公式傅里叶变换的定义公式如下:F(ω) = ∫[f(t) * e^(-jωt)]dt其中F(ω)表示信号f(t)在频率ω处的傅里叶变换。
2. 傅里叶变换的逆变换公式傅里叶变换的逆变换公式如下:f(t) = ∫[F(ω) * e^(jωt)]dω其中f(t)表示频域信号F(ω)的逆变换。
3. 傅里叶级数展开公式傅里叶级数展开公式将一个周期信号表示为一系列正弦和余弦函数的和。
公式如下:f(t) = a₀ + Σ[aₙ * cos(nω₀t) + bₙ * sin(nω₀t)]其中a₀, aₙ, bₙ为系数,n为正整数,ω₀为基本角频率。
4. 傅里叶级数系数计算公式傅里叶级数系数的计算公式如下:a₀ = 1/T₀ * ∫[f(t)]dtaₙ = 2/T₀ * ∫[f(t) * cos(nω₀t)]dtbₙ = 2/T₀ * ∫[f(t) * sin(nω₀t)]dt其中T₀为周期。
5. 傅里叶变换的线性性质公式傅里叶变换具有线性性质,公式如下:F(a * f(t) + b * g(t)) = a * F(f(t)) + b * F(g(t))其中a和b为常数。
6. 傅里叶变换的频移性质公式傅里叶变换具有频移性质,公式如下:F(f(t - t₀)) = e^(-jωt₀) * F(f(t))其中t₀为时间偏移量。
7. 傅里叶变换的频率缩放公式傅里叶变换具有频率缩放性质,公式如下:F(f(a * t)) = (1/|a|) * F(f(t/a))其中a为常数。
8. 傅里叶变换的频域微分公式傅里叶变换的频域微分公式如下:F(d/dt[f(t)]) = jωF(f(t))其中d/dt表示对时间t的导数。
傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释1 线性2 时域平移3 频域平移,变换2的频域对应4 如果值较大,则会收缩到原点附近,而会扩散并变得扁平.当|?a?|?趋向无穷时,成为狄拉克δ函数。
5 傅里叶变换的二元性性质。
通过交换时域变量和频域变量得到.6 傅里叶变换的微分性质7 变换6的频域对应8 表示和的卷积—这就是卷积定理9 变换8的频域对应。
[编辑]平方可积函数傅里叶变换傅里叶变换10 矩形脉冲和归一化的sinc函数11 变换10的频域对应。
矩形函数是理想的低通滤波器,sinc函数是这类滤波器对反因果冲击的响应。
12 tri?是三角形函数13 变换12的频域对应14 高斯函数exp( ? αt2)的傅里叶变换是他本身.只有当Re(α) > 0时,这是可积的。
15 光学领域应用较多161718 a>019 变换本身就是一个公式20 J0(t)?是0阶第一类贝塞尔函数。
21 上一个变换的推广形式;?T n(t)?是第一类切比雪夫多项式。
22 U n?(t)是第二类切比雪夫多项式。
[编辑]分布时域信号角频率表示的傅里叶变换弧频率表示的傅里叶变换注释23 δ(ω)代表狄拉克δ函数分布.这个变换展示了狄拉克δ函数的重要性:该函数是常函数的傅立叶变换24 变换23的频域对应25 由变换3和24得到.26 由变换1和25得到,应用了欧拉公式:?cos(at) = (e iat?+?e???iat) / 2.27 由变换1和25得到28 这里,?n是一个自然数.δ(n)(ω)是狄拉克δ函数分布的n阶微分。
这个变换是根据变换7和24得到的。
将此变换与1结合使用,我们可以变换所有多项式。
29 此处sgn(ω)为符号函数;注意此变换与变换7和24是一致的.30 变换29的推广.31 变换29的频域对应.32 此处u(t)是单位阶跃函数;此变换根据变换1和31得到.33 u(t)是单位阶跃函数,且a?> 0.34 狄拉克梳状函数——有助于解释或理解从连续到离散时间的转变.[编辑]二元函数三元函数。
时域信号
弧频率表示的
傅里叶变换
注释
1
线性
2
时域平移
3
频域平移, 变换2的频域对应
4
如果
值较大,则会收缩到原
点附近,而会扩散并变得
扁平. 当 | a | 趋向无穷时,成为
Delta 函数。
5
傅里叶变换的二元性性质。
通过交换时域变量 和频域变量 得到.
6
傅里叶变换的微分性质
7
变换6的频域对应
表示和的卷积—这就是卷积定理
矩形脉冲和归一化的
变换
想的低通滤波器,
滤波器对反因果冲击的响应。
tri
变换
高斯函数
换是他本身
这是可积的。
a>0
变换本身就是一个公式δ
这个变换展示了狄拉克要性:
变换
由变换
由变换
式
由变换
这里
是狄拉克
这个变换是根据变换将此变换与
换所有多项式。
此处
换与变换
变换
变换
此处
根据变换
u
狄拉克梳状函数
理解从连续到离散时间的转变
Welcome !!! 欢迎您的下载,资料仅供参考!。