硕士“信号与系统(A卷2)”
- 格式:doc
- 大小:230.00 KB
- 文档页数:4
信号与系统期末考试试题(第二套)符号说明:为符号函数,为单位冲击信号,为单位脉冲序列,为单位阶跃信号,为单位阶跃序列。
一、填空(共30分,每小题3分)1. 已知,求。
2. 已知,求。
3. 信号通过系统不失真的条件为系统函数。
4. 若最高角频率为,则对取样的最大间隔是。
5. 信号的平均功率为。
6. 已知一系统的输入输出关系为,试判断该系统是否为线性时不变系统 。
7. 已知信号的拉式变换为,求该信号的傅立叶变换=。
8. 已知一离散时间系统的系统函数,判断该系统是否稳定。
9. 。
10. 已知一信号频谱可写为是一实偶函数,试问有何种对称性。
二、计算题(共50分,每小题10分)1.已知一LTI 系统当输入为时,输出为,试写出系统在输入为时的响应的时间表达式,并画出波形(上述各信号波形如图A-1所示)。
图A-12.已知信号的波形如图A-2所示,且。
)sgn(t )(t δ)(k δ)(t ε)(k ε)()4()(2t t t f ε+=_______)("=t f }4,2,4,3{)(},1,2,2,1{)(=-=k h k f ______)()(=*k h k f _______)(=ωj H )(t f m ω)4(t f ______t t t f ππ30cos 220cos 4)(+=______)3()(t f t y =______)1)(1(1)(2-+=s s s F )(ωj F ______2121)(---+=z z z H ______=+-+⎰∞∞-dt t t t )1()2(2δ______)(,)()(3ωωωωA e A j F j -=)(t f ______()t x 1()t y 1()t x 2()t y2()t x ()()ωj X t x ↔图A-2(1)试求的相位;(2)试求?(3)试求?3.已知线性时不变因果连续系统的频率响应函数(1)求系统的冲激响应;(2)若系统输入,求系统的零状态响应。
信号与系统题目部分,(卷面共有200题,0.0分,各大题标有题量和总分) 一、选择题(7小题,共0.0分)[1]题图中,若h '(0)=1,且该系统为稳定的因果系统,则该系统的冲激响应()h t 为。
A 、231()(3)()5tt h t e e t ε-=+- B 、32()()()tt h t e e t ε--=+C 、3232()()55tt e t e t εε--+D 、3232()()55tt e t e t εε--+-[2]已知信号x[n]如下图所示,则x[n]的偶分量[]e x n 是。
[3]波形如图示,通过一截止角频率为50rad sπ,通带内传输值为1,相移为零的理想低通滤波器,则输出的频率分量为() A 、012cos 20cos 40C C t C t ππ++ B 、012sin 20sin 40C C t C t ππ++ C 、01cos 20C C t π+ D 、01sin 20C C t π+[4]已知周期性冲激序列()()T k t t kT δδ+∞=-∞=-∑的傅里叶变换为()δωΩΩ,其中2TπΩ=;又知111()2(),()()2T T f t t f t f t f t δ⎛⎫==++⎪⎝⎭;则()f t 的傅里叶变换为________。
A 、2()δωΩΩ B 、24()δωΩΩ C 、2()δωΩΩ D 、22()δωΩΩ[5]某线性时不变离散时间系统的单位函数响应为()3(1)2()kkh k k k εε-=--+,则该系统是________系统。
A 、因果稳定B 、因果不稳定C 、非因果稳定D 、非因果不稳定 [6]一线性系统的零输入响应为(23kk --+)u(k), 零状态响应为(1)2()k k u k -+,则该系统的阶数A 、肯定是二阶B 、肯定是三阶C 、至少是二阶D 、至少是三阶 [7]已知某系统的冲激响应如图所示则当系统的阶跃响应为。
第一套第1题,下列信号的分类方法不正确的是(A)A、数字信号和离散信号B、确定信号和随机信号C、周期信号和非周期信号:D、因果信号与反因果信号第2题,以下信号属于连续信号的是(B)A、e-nTB、e-at sin(ωt)C、cos(nπ)D、sin(nω0)第3题,下列说法正确的是(D)A、两个周期信号x(t),y(t)的和x(t)+y(t)一定是周期信号。
B、两个周期信号x(t),y(t)的周期分别为2和2开根号,其和信号x(t)+y(t)是周期信号。
C、两个周期信号x(t),y(t)的周期分别为2和Pi,其和信号x(t)+y(t)是周期信号。
D、两个周期信号x(t),y(t)的周期分别为2和3,其和信号x(t)+y(t)是周期信号。
第4题,将信号f(t)变换为( A ) 称为对信号f(t)的平移或移位。
A、f(t-t0)B、f( k -k0)C、f(at)D、f(-t)第五题,下列基本单元属于数乘器的是(A )A、B、C、D、第六题、下列傅里叶变换错误的是(D)А.1<-->2πδ(ω)B.ejω0t<-- > 2πδ(ω-ω0 )С.соѕ(ω0t) < -- > π[δ(ω-ω0 ) +δ (ω+ω0 )]D. ѕіn(ω0t)<-> jπ[δ(ω+ω0)+ δ(ω- ω0)]第7题、奇谐函数只含有基波和奇次谐波的正弦和余弦项,不会包含偶次谐波项。
(对)第8题、在奇函数的傅里叶级数中不会含有正弦项,只可能含有直流项和余弦项。
(错)第9题、满足均匀性和____条件的系统称为线性系统。
(叠加性)第10题.根据激励信号和内部状态的不同,系统响应可分为零输入响应和__响应(零状态)第二套1、当周期信号的周期增大时,频谱图中谱线的间隔( C)A:增大B:无法回答C:减小D:不变2、δ(t)的傅立叶变换为( A)。
A:1B: u(t)C: 0D:不存在3、已知f(t),为求f(3-2t)则下列运算正确的是(B)A:f(-2t)左移3/2B:f(-2t)右移3/2C:f(2t)左移3D:f(2t)右移3 ,4、下列说法不正确的是(D)。
《信号与系统》卷子〔A 卷〕一、填空题〔每空1分,共18分〕1.假设)()(s F t f ↔,则↔)3(t F 。
2.ℒ()n t t ε⎡⎤=⎣⎦,其收敛域为 。
3.()(21)f t t ε=-的拉氏变换)(s F = ,其收敛域为 。
4.利用拉氏变换的初、终值定理,可以不经反变换计算,直接由)(s F 决定出()+o f 及)(∞f 来。
今已知)3)(2(3)(+++=s s s s s F ,[]Re 0s > 则)0(+f ,)(∞f = 。
5.已知ℒ[]022()(1)f t s ωω=++,Re[]1s >-,则()F j ω=ℱ[()]f t = 。
6.已知ℒ0220[()](1)f t s ωω=-+,Re[]1s >,则()F j ω=ℱ[()]f t = 。
7.已知()[3(1)](1)t f t e Sin t t ε-=--,试写出其拉氏变换()F s 的解析式。
即()F s = 。
8.对连续时间信号进行均匀冲激取样后,就得到 时间信号。
9.在LTI 离散系统分析中, 变换的作用类似于连续系统分析中的拉普拉斯变换。
10.Z 变换能把描述离散系统的 方程变换为代数方程。
11.ℒ 0(3)k t k δ∞=⎡⎤-=⎢⎥⎣⎦∑ 。
12.已知()()f t F s ↔,Re[]s α>,则↔--)1()1(t t f e t ε ,其收敛域为 。
13.已知22()(1)sse F s s ω-=++,Re[]1s >-,则=)(t f 。
14.单位样值函数)(k δ的z 变换是 。
二、单项选择题〔在每题的备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
每题1分,共8分〕 1.转移函数为327()56sH s s s s=++的系统,有〔 〕极点。
A .0个 B .1个 C .2个 D .3个 2.假设11)(1+↔s t f ,Re[]1s >-;)2)(1(1)(2++↔s s t f ,Re[]1s >-,则[]12()()()y t f t f t =-的拉氏变换()Y s 的收敛区是〔 〕。
重庆邮电大学2021年攻读硕士学位研究生入学考试试题
机密 启用前
重庆邮电大学2021年攻读硕士学位研究生入学考试试题科目名称:信号与系统(A)卷
科目代码:801
考生注意事项
1、答题前,考生必须在答题纸指定位置上填写考生姓名、报
考单位和考生编号。
2、所有答案必须写在答题纸上,写在其他地方无效
3、填(书)写必须使用黑色字迹钢笔、圆珠笔或签字笔。
4、考试结束,将答题纸和试题一并装入试卷袋中交回。
5、本试题满分150分,考试时间3小时。
注:所有答案必须写在答题纸上,试卷上作答无效!第1页/共6页。
姓名:报考专业: 准考证号码:密封线内不要写题2021年全国硕士研究生招生考试初试自命题试题科目名称:信号与系统(√A 卷 □B 卷)科目代码:826考试时间:3小时 满分150分可使用的常用工具:□无 □计算器 √直尺 □圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
一、选择题(共5小题,每小题5分,共25分)1.下列信号的分类方法不正确的是( )。
A .数字信号和离散信号B .确定信号和随机信号C .周期信号和非周期信号D .因果信号与反因果信号 2.下列说法不正确的是( )。
A .一般周期信号为功率信号。
B . 时限信号(仅在有限时间区间不为零的非周期信号)为能量信号。
C .[](0.5)[]n x n u n =-为能量信号。
D .()()x t tu t =为能量信号。
3.当*()()x t x t =-时,其傅里叶变换()X j ω是( )。
A .实偶函数B .虚奇函数C .共轭反对称函数D .周期函数 4. 下列对线性时不变系统的描述不正确的是( )。
A. 一个稳定的连续时间系统其系统函数的极点全部位于S 的左半平面。
B. 连续时间系统冲激响应的函数形式完全取决于系统函数的极点。
C. 连续时间系统频率响应的幅度和相位完全取决于系统函数的极点。
D. 稳定性是系统自身的固有特性,与激励无关。
5. 信号()x t 的拉普拉斯变换3221()(+1)(+2)(+3)s s s X s s s s +++=,则()x t 的终值为( )。
A. 0B. 1C. 2D. 不存在二、填空题(共8空,每空5分,共40分)1.(1)j t eπ-的基波周期为 ,cos()cos()24nnππ的基波周期为 。
2. 系统输入-输出的关系为()(2)(2)y t x t x t =-+-,该系统 线性的, 时姓名:报考专业: 准考证号码:密封线内不要写题2021年全国硕士研究生招生考试初试自命题试题科目名称:信号与系统(√A 卷 □B 卷)科目代码:826考试时间:3小时 满分150分可使用的常用工具:□无 □计算器 √直尺 □圆规(请在使用工具前打√)注意:所有答题内容必须写在答题纸上,写在试题或草稿纸上的一律无效;考完后试题随答题纸交回。
《信号与系统》期末试卷A 卷班级: 学号:__________ 姓名:________ _ 成绩:_____________一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 D 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 C 。
A.因果时不变B.因果时变C.非因果时不变D. 非因果时变3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u et h t,该系统是 A 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 D 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 B 。
A.tt22sin B.t t π2sin C. t t 44sin D. ttπ4sin 6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 A 。
A.∑∞-∞=-k k )52(52πωδπB. ∑∞-∞=-k k)52(25πωδπ C. ∑∞-∞=-k k )10(10πωδπD.∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为C 。
A. )}(Re{ωj eX j B. )}(Re{ωj e X C. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 D 。
A. 500 B. 1000 C. 0.05D. 0.0019、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t=,其傅立叶变换)(ωj G 收敛,则x(t)是 C 。
1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿.4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延)。
6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 .9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 。
二、判断下列说法的正误,正确请在括号里打“√”,错误请打“×”。
(每小题2分,共10分)1。
单位冲激函数总是满足)()(t t -=δδ ( √ ) 2。
满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4。
连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5。
所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的. ( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
一、选择题(cos )(1)d t t t t t t π∞∞-∞-∞+δ-=0δ-=⎰⎰的值为〔 〕。
A. )(3t e t δ-C.)1(-t δ⎰∞∞-+dtt t )()1(δ的值为〔 〕3.()()[]=*-t t e dtd tεε2〔 〕 A.()t δ B.()t e tε2- C.()t δ2- D.t e 22-- 4、信号)()(2t e t f t ε=的拉氏变换及收敛域为〔 〕。
B.2]Re[,21)(-<-=s s s F C. 2]Re[,21)(->+=s s s F D.2]Re[,21)(<+=s s s F 5. 信号f(t)=ε(t)*(δ(t)-δ(t -4))的单边拉氏变换F(s)=( )。
A.s1B.4s 1s 1+-D.se -4s6.某一因果线性时不变系统,其初始状态为零,当输入信号为ε(t)时,其输出r(t)的拉氏变换为R(s),问当输入r 1(t)=ε(t -1)-ε(t -2)时,响应r 1(t)的拉氏变换R 1(s)=( )。
A.(e-s-e-2s)R(s) B.R(s-1)-R(s-2) C.(2-s 11-s 1-)R(s) D.R(s)s )e -(e -2s -s 7.信号f(t)的波形如以下列图所示,那么f(t)的表达式为〔 〕。
A.)1()()(--=t u t u t fB.)1()()(-+=t u t u t fC.)1()()(+-=t u t u t fD.)()1()(t u t u t f -+=)()52(t u e t j +-的傅里叶变换〔 〕。
A.ωω521j e j +C.)5(21-+-ωj D.ωω251j e j +t9.)2)(1()2(2)(-++=s s s s s H ,属于其极点的是〔 〕。
A.1B.2C.0D.-210.信号f 〔t 〕的频带宽度为Δω,那么f 〔3t -2〕的频带宽度为〔 〕。
电气《信号与系统》复习参考练习题一、单项选择题:14、已知连续时间信号,)2(100)2(50sin )(--=t t t f 则信号t t f 410cos ·)(所占有的频带宽度为() A .400rad /s B 。
200 rad /s C 。
100 rad /s D 。
50 rad /sf如下图(a)所示,其反转右移的信号f1(t) 是( d )15、已知信号)(tf如下图所示,其表达式是()16、已知信号)(1tA、ε(t)+2ε(t-2)-ε(t-3)B、ε(t-1)+ε(t-2)-2ε(t-3)C、ε(t)+ε(t-2)-ε(t-3)D、ε(t-1)+ε(t-2)-ε(t-3)17、如图所示:f(t)为原始信号,f1(t)为变换信号,则f1(t)的表达式是()A、f(-t+1)B、f(t+1)C、f(-2t+1)D、f(-t/2+1)18、若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( c )19。
信号)2(4sin 3)2(4cos 2)(++-=t t t f ππ与冲激函数)2(-t δ之积为( )A 、2B 、2)2(-t δC 、3)2(-t δD 、5)2(-t δ,则该系统是()>-系统的系统函数.已知2]Re[,651)(LTI 202s s s s s H +++= A 、因果不稳定系统 B 、非因果稳定系统C 、因果稳定系统D 、非因果不稳定系统21、线性时不变系统的冲激响应曲线如图所示,该系统微分方程的特征根是( )A 、常数B 、 实数C 、复数D 、实数+复数22、线性时不变系统零状态响应曲线如图所示,则系统的输入应当是( )A 、阶跃信号B 、正弦信号C 、冲激信号D 、斜升信号23. 积分⎰∞∞-dt t t f )()(δ的结果为( ) A )0(f B )(t f C.)()(t t f δ D.)()0(t f δ24. 卷积)()()(t t f t δδ**的结果为( )A.)(t δB.)2(t δC. )(t fD.)2(t f25. 零输入响应是( )A.全部自由响应B.部分自由响应C.部分零状态响应 D .全响应与强迫响应之差2A 、1-eB 、3eC 、3-e D 、1 27.信号〔ε(t)-ε(t -2)〕的拉氏变换的收敛域为 ( )A.Re[s]>0B.Re[s]>2C.全S 平面D.不存在28.已知连续系统二阶微分方程的零输入响应)(t y zi 的形式为t t Be Ae 2--+,则其2个特征根为( )A 。
《信号与系统》 A 卷一、选择题(每题2分,共10分)1、连续线性时不变系统的单位冲激响应()t h 为系统的( ) A. 零输入响应 B. 零状态响应 C. 自由响应 D. 强迫响应2、如图所示的周期信号()t f 的傅立叶级数中所含的频率分量是( ) A .余弦项的偶次谐波,含直流分量B .余弦项的奇次谐波,无直流分量C .正弦项的奇次谐波,无直流分量D .正弦项的偶次谐波,含直流分量3A. 零输入响应的全部 B. 零状态响应的全部C. 全部的零输入响应和部分的零状态响应D. 全部的零输入响应和全部的零状态响应 4、如果两个信号分别通过系统函数为()s H 的系统后,得到相同的响应,那么这两个信号( ) A .一定相同 B .一定不同 C .只能为零 D .可以不同 5、已知系统微分方程为()()()t e t r dtt dr =+2,若()10=+r ,()()()t u t t e ⋅=2sin ,解得全响应为()⎪⎭⎫ ⎝⎛-+=-22sin 42452πt e t r t ,0≥t 。
全响应中⎪⎭⎫ ⎝⎛-22sin 42πt 为( ) A .零输入响应分量B .自由响应分量C .零状态响应分量D .稳态响应分量二、填空题(每题3分,共30分) 1、()()=⎰∞∞-dt t f t δ________________。
2、某一LTI 离散系统,其输入()n x 和输出()n y 满足如下线性常系数差分方程,)1n (x 31)n (x )1n (y 21)n (y -+=--,则系统函数()z H 是________________。
3、()()=-'⎰∞∞-dt t f t t 0δ________________。
4、已知()t f )(ωF ↔,则()t f 2-的傅里叶变换为________________。
5、已知信号()t f 的傅立叶变换为()ωF ,则信号()0t at f -的傅立叶变换为________________。
中国民航大学2007年硕士研究生入学考试试卷答案科目名称:信号与系统 (A 卷)一、某LTI 因果系统,已知当激励为e 1(t )=u (t )时, 其零状态响应为r 1(t )=(3e -t +4 e -2t ) u (t )。
求当激 励为e 2(t )时(如图1所示),该系统的零状态响应 r 2(t )。
(10分)解: e 2(t )=3[u (t )- u (t -4)]∴ r 2(t )=3(3e -t +4 e -2t ) u (t ) -3[3e -(t -4)+4 e -2(t -4)] u (t -4) =(9e -t +12 e -2t ) u (t ) -[9e -(t -4)+12 e -2(t -4)] u (t -4)二、某LTI 因果系统的单位样值响应是h (n )=a n u (n ),其中0<a <1。
若激励信号为x (n ) =u (n )- u (n -3),求系统的零状态响应y (n )。
(11分) 解: x (n )= u (n )- u (n -3) =δ(n )+ δ(n -1)+ δ(n -2)∴ y (n )= x (n )* h (n )=[δ(n )+ δ(n -1)+ δ(n -2)] * h (n ) = h (n ) + h (n -1)+ h (n -2) =a n u (n )+ a n -1u (n -1)+ a n -2u (n -2)三、已知某LTI 因果系统的激励e (t )=sin t ●u (t ),其零状态响应r zs (t )=t [u (t )-u (t -4)]/4,求该系统的单位冲激响应h (t )。
(14分) 解: r zs (t )= e (t )* h (t )= sin t ●u (t ) * h (t )r ’zs (t )= e ’(t )* h (t )= cos t ●u (t ) * h (t ) r ’ ’zs (t )= e ’ ’(t )* h (t )= [δ(t )-sin t ●u (t )] * h (t )= h (t )- e (t )* h (t )= h (t ) - r zs (t ) ∴ h (t )= r ’ ’zs (t )+ r zs (t )=)]4()([4)4()4(41)(41'--+----t u t u tt t t δδδ图1四、已知周期信号f (t )的傅里叶级数表示式为f (t )=1+sin (ω1t )+2cos (ω1t )+cos (2ω1t +π/4),其中ω1为基波的角频率。
信号与系统专题练习题一、选择题1.设当t<3时,x(t)=0,则使)2()1(t x t x -+-=0的t 值为 C 。
A t>-2或t>-1 B t=1和t=2 C t>-1 D t>-22.设当t<3时,x(t)=0,则使)2()1(t x t x -⋅-=0的t 值为 D 。
A t>2或t>-1 B t=1和t=2 C t>-1 D t>-23.设当t<3时,x(t)=0,则使x(t/3)=0的t 值为 C 。
A t>3 B t=0 C t<9 D t=34.信号)3/4cos(3)(π+=t t x 的周期是 C 。
A π2 B π C 2/π D π/25.下列各表达式中正确的是 B A. )()2(t t δδ= B.)(21)2(t t δδ= C. )(2)2(t t δδ= D. )2(21)(2t t δδ=6. 已知系统的激励e(t)与响应r(t)的关系为:)1()(t e t r -= 则该系统为 B 。
A 线性时不变系统 B 线性时变系统 C 非线性时不变系统 D 非线性时变系统7. 已知 系统的激励e(t)与响应r(t)的关系为:)()(2t e t r = 则该系统为 C 。
A 线性时不变系统B 线性时变系统C 非线性时不变系统D 非线性时变系统 8. ⎰∞-=td ττττδ2sin )( A 。
A 2u(t) B )(4t δ C 4 D 4u(t)10.dt t t )2(2cos 33+⋅⎰-δπ等于 B 。
A 0 B -1 C 2 D -211.线性时不变系统输出中的自由响应的形式由 A 决定A 系统函数极点的位置;B 激励信号的形式;C 系统起始状态;D 以上均不对。
12.若系统的起始状态为0,在x (t)的激励下,所得的响应为 D 。
A 强迫响应;B 稳态响应;C 暂态响应;D 零状态响应。
硕士研究生入学考试试卷
科目名称:信号与系统 (A 卷)
注意:
1.答案全部写在答题纸上,写在试卷上不计分;
2.答题时一律使用蓝、黑色墨水笔或圆珠笔作答,用其它笔答题不给分;
3.考试时间:3小时,总分:150分。
注:本试卷中,u (t )表示单位阶跃函数,u (n )表示单位阶跃序列。
一、(共50分)解答下列各题,要求给出必要的解答过程。
1.(5分)很多同学说“信号与系统”主要讲了三大变换,你认为这门课主要阐述和解决的是哪些方面的问题?
2.(5分)一微分方程描述的系统,在起始状态不变条件下,当激励为()e t 时,其全响应为31()[2e cos(2)]()t r t t u t -=+,当激励为2()e t 时,其全响应为
32()[e 2cos(2)]()t r t t u t -=+,求当激励为d ()d e t t
时的全响应。
3.(5分)滤波器是线性时不变系统吗?为什么?
4.(5分)1π()sin()[()(2)]f t t u t u t T T =--, π()sin()f t t T
=, 1()()f t f t =*
5.(5分)非因果系统能实现吗?说说你的观点,可以举实例说明。
6.(5分)“因为-()t e u t α的傅里叶变换的为1+j αω
,将=0α带入,可得()u t 的傅里叶变换的为1j ω
”,这个推理对吗?如果不对,说明理由并改正。
7.(5分)你能用某种线性时不变系统来实现信号的频谱搬移吗?如果能,举出例子,如果不能,说明为什么。
8.(5分)若f (t ) 的拉普拉斯变换F (s )只在虚轴上存在两个共轭极点,没有零点,画 出f (t )的大致波形。
共4页 第 1 页
9.(5分)同学们在做无失真传输实验的时候,发现一个原本的失真系统,对正弦输入却很难看出波形失真的表现,请你帮他解释这一现象。
10.(5分)若{
1
()()()}
3
n
y n u n u n
⎛⎫
=*
⎪
⎝⎭
,则(2)
y的值是多少。
二、(共10分)已知一线性时不变系统,单位冲激响应为()()()
h t u t u t T
=--,输入如图1所示的周期信号()
e t,求解系统输出()
r t,并画出()
r t波形。
三、(共15分)已知升余弦低通滤波器频响函数为:
求该系统单位冲激响应()
h t。
四、(共15分)图2是一段优美的男低音经正弦调制后的幅度谱,请你设计一个解调系统,把原声音还原出来,要求写出分析思路和过程,画出系统实现框图。
图 1
图 2
共4页第2页
()
1+cos
()=
H j
other
ωωπ
ω
⎧<
⎪
⎨
⎪⎩
五、(共15分)对正弦信号1()cos(2π)f t t =,和2()cos(10π)f t t =分别以采样频率8πs ω=进行理想冲激采样,采样信号分别记为1()s f t 和2()s f t ,解答下列问题:
1.分别画出1()s f t 和2()s f t 的波形,观察它们有什么关系;
2.哪个信号能由它的采样信号恢复出来?设计你的恢复系统,写出分析思路和过程,写出必要的数学表达式和图形。
六、(共10分)已知某系统的系统函数为21()21
H s s s =++ ,为使该系统对单位阶跃信号()u t 的完全响应仍为()u t ,请确定系统的起始状态(0)r -和 (0)r -'。
七、(共15分)已知某连续系统的零极点图如图3所示。
且单位冲激响应初值为(0)1h +=。
请回答以下问题:
1.写出系统函数(s)H ;
2.
当激励信号()sin 2
e t t =时,求系统的响应()r t 。
图 3
共4页 第 3 页
八. (20分)在某语音传输系统中有回声现象,需要设计一个回声消除系统,为简化问题,把回声模型表示为:
其中,()x n 表示语音输入信号,()y n 表示()x n 经该系统后的输出,分析解答下列问题:
1.(5分)求该系统的单位脉冲响应;
2.(5分)判断该系统因果性,并说明理由;
3.(10分)设计回声消除系统,使该系统与语音传输系统级联在一起后,相当于一个恒等系统。
要求写出设计思路,给出回声消除系统的结构框图。
共4 页 第 4 页 ()()()
0.51y n x n x n =+-。