机械能守恒定律章末总结
- 格式:doc
- 大小:365.47 KB
- 文档页数:6
第七章《机械能守恒定律》知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5 功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W1+W2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W=Flcos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P=Fv 和F-f = ma 6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能守恒定律知识点总结在物理学中,机械能守恒定律是一个非常重要的概念,它对于理解物体的运动和能量转化有着关键的作用。
一、机械能守恒定律的定义机械能守恒定律指的是:在只有重力或弹力做功的物体系统内,动能与势能可以相互转化,而总的机械能保持不变。
这里要明确一点,机械能包括动能和势能。
动能是物体由于运动而具有的能量,其大小与物体的质量和速度有关,公式为$E_{k} =\frac{1}{2}mv^2$,其中$m$是物体的质量,$v$是物体的速度。
势能则分为重力势能和弹性势能。
重力势能是物体由于被举高而具有的能量,其大小与物体的质量、高度和重力加速度有关,公式为$E_{p} =mgh$,其中$h$是物体相对参考平面的高度。
弹性势能是物体由于发生弹性形变而具有的能量,其大小与形变程度有关。
二、机械能守恒定律的条件机械能守恒定律成立需要满足两个条件:一是只有重力或弹力做功;二是系统内没有其他形式的能量转化,比如摩擦力做功会将机械能转化为内能,这种情况下机械能就不守恒了。
为了更好地理解这两个条件,我们来看几个例子。
比如一个自由落体的物体,在下落过程中只有重力做功,没有其他力做功,所以机械能守恒。
再比如一个弹簧振子在水平方向振动,只有弹簧的弹力做功,机械能也是守恒的。
但是,如果一个物体在粗糙的水平面上运动,摩擦力做功,那么机械能就不守恒了,因为摩擦力做功会使机械能转化为内能。
三、机械能守恒定律的表达式机械能守恒定律有多种表达式,常见的有以下几种:1、$E_{k1} + E_{p1} = E_{k2} + E_{p2}$这表示初状态的动能与势能之和等于末状态的动能与势能之和。
2、$\Delta E_{k} =\Delta E_{p}$即动能的增加量等于势能的减少量,或者说动能的减少量等于势能的增加量。
3、$E_{1} = E_{2}$表示系统在任意两个状态下的机械能相等。
四、机械能守恒定律的应用机械能守恒定律在解决物理问题中有着广泛的应用,特别是在涉及物体的运动和能量转化的问题中。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
功是能量转化的量度。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
当)2,0[πθ∈时,即力与位移成锐角,功为正;动力做功; 当2πθ=时,即力与位移垂直功为零,力不做功; 当],2(ππθ∈时,即力与位移成钝角,功为负,阻力做功; 5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ8 合外力的功的求法:方法1:先求出合外力,再利用W =Fl cos α求出合外力的功。
方法2:先求出各个分力的功,合外力的功等于物体所受各力功的代数和。
二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυc o s F P =(平均功率或瞬时功率)3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5分析汽车沿水平面行驶时各物理量的变化,采用的基本公式是P =Fv 和F-f = ma6 应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值m ax υ,则f P /max =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度m ax υ,则f P /max =υ。
机械能知识点总结一、功1概念:一个物体受到力的作用,并在力的方向上发生了一段位移,这个力就对物体做了功。
2条件:. 力和力的方向上位移的乘积3公式:W=F S cos θW ——某力功,单位为焦耳(J )F ——某力(要为恒力),单位为牛顿(N ) S ——物体运动的位移,一般为对地位移,单位为米(m )θ——力与位移的夹角4功是标量,但它有正功、负功。
某力对物体做负功,也可说成“物体克服某力做功”。
功的正负表示能量传递的方向,即功是能量转化的量度。
当)2,0[πθ∈时,即力与位移成锐角,力做正功,功为正; 当2πθ=时,即力与位移垂直,力不做功,功为零; 当],2(ππθ∈时,即力与位移成钝角,力做负功,功为负;5功是一个过程所对应的量,因此功是过程量。
6功仅与F 、S 、θ有关,与物体所受的其它外力、速度、加速度无关。
7几个力对一个物体做功的代数和等于这几个力的合力对物体所做的功。
即W 总=W 1+W 2+…+Wn 或W 总= F 合Scos θ二、功率1概念:功跟完成功所用时间的比值,表示力(或物体)做功的快慢。
2公式:tW P =(平均功率) θυcos F P =(平均功率或瞬时功率) 3单位:瓦特W4分类:额定功率:指发动机正常工作时最大输出功率实际功率:指发动机实际输出的功率即发动机产生牵引力的功率,P 实≤P 额。
5应用:(1)机车以恒定功率启动时,由υF P =(P 为机车输出功率,F 为机车牵引力,υ为机车前进速度)机车速度不断增加则牵引力不断减小,当牵引力f F =时,速度不再增大达到最大值max υ,则f P /m ax =υ。
(2)机车以恒定加速度启动时,在匀加速阶段汽车牵引力F 恒定为f ma +,速度不断增加汽车输出功率υF P =随之增加,当额定P P =时,F 开始减小但仍大于f 因此机车速度继续增大,直至f F =时,汽车便达到最大速度max υ,则f P /m ax =υ。
〈教学设计〉第七章----机械能守恒定律—--期末复习铜梁中学物理组吴昌水A 知识点一、功、功率和机车启动1、功:(1)恒力..(力的大小和方向都不变)做功:W=F s cos ,(θ是指力矢量与位移矢量平移同一起点方向夹角)。
功的本质是力在空间的积累,所谓积累,既可以是力在位移方向的分量Fcos θ与位移s 的乘积,也可以是位移在力的方向上的分量 s cos θ与力F 的乘积。
理解功的概念时,要从本质上进行理解,而不能乱套公式.(上述功的定义式对恒力才适用.);(2)功的正负的含义:力对物体做正功,导致物体能量增加;力对物体做负功,导致物体能量减少;(3)功与参照物有关,一般以地面为参照物;(4)总功是指合力做的功或各力做功的代数和。
2、功率:指力做功的快慢,单位:瓦特(w )。
(1)平均功率:平均功率公式:P平均=W/t ;(2)瞬时功率:P=Fvcos θ==F (vcos θ)=(Fcos θ)v ,(θ是指力矢量与速度矢量平移同一起点方向夹角) )当例F 与速度V 同向时,P=FV (V=P/F 或F=P/V );当力F 与速度V 垂直时,力F 不做功。
3、机车起动:(1)、以恒定功率起动汽车从静止开始以额定功率起动:开始时由于汽车的速度很小,由公式F=P/V 知:牵引力F 较大,因而由牛顿第二定律F-f=ma 知,汽车的加速度较大.随着时间的推移,汽车的速度将不断增大,牵引力F 将减小,加速度减小,但是由于速度方向和加速度方向相同,汽车的速度仍在不断增大,牵引力将继续减小,直至汽车的牵引力F 和阻力f 相平衡为止. 汽车的牵引力F 和阻力f 平衡时,F-f=0,加速度a =0,汽车的速度达到最大值v m .汽车的运动形式是做加速度越来越小的变加速直线运动,最终做匀速直线运动.其速度-时间图像如图4-1-3所示.(v m =P/f ;a=((p/v)-f)/m ;结合动能定理计算位移和速度。
第七章机械能守恒定律【知识点】:1、功1、做功两个必要因素:力和力的方向上发生位移。
2、功的计算:W = FLCOS83、正功和负功:①当。
^a< H /2时,cosa>0, w>o,表示力对物体做正功。
②当a二刃/2时,cosa=0, w=0.表示力对物体不做功(力与位移方向垂直)。
③当n/2<a^n时,cosa<0. w<0>表示为对物体做负功。
4、求合力做功:1)先求出合力,然后求总功,表达式为W .Q二F R L COS O(为合力与位移方向的夹角)2)合力的功等于各分力所做功的代数和,即W总二W1+W2+W3+ ----------例题.如图1所示,用力拉一质量为m的物体,使它沿水平匀速移动距离s,若物体和地而间的摩擦因数为U,则此力对物体做的功为()A. u mgsB・ M mgs/ (cos a + u sin u )C・ P mgs/ (cos a - u sin o )D・ P mgscos a / (cos a + u sin a )二、功率w图1K定义式:P =—,所求出的功率是时间t内的平均功率。
t2、计算式:P = Fvcos<9,其中()是力与速度间的夹角。
用该公式时,要求F为恒力。
1)当V为瞬时速度时,对应的P为瞬时功率:2)当v为平均速度时,对应的P为平均功率3)若力和速度在一条直线上,上式可简化为P = Fv3.机车起动的两种理想模式1)以恒定功率启动逅加直线运动 2)以恒定加速度a 启动匀送 | K= N^aTl©〉 凸尸=Z^L 时, C = O » 至]就尢"“・=K "F G 速三、 亟力势能重力势能表达式:Ep=mgh重力做功:= E P] -E P2 = -A£P (重力做功与路径无关,只与物体的初末位置有关)四、 弹性势能弹性势能表达式:E P =kAl 2/2 (△/为弹簧的型变量)五、 动能定理(1)动能定理的数学表达式为: 勻速直 线运动(2)动能泄理应用要点①外力对物体所做的总功,既等于合外力做的功,也等于所有外力做功的代数和。
第七章 机械能守恒单元总结知识要点一:功和功率的计算1.功的计算方法(1)利用W =Fl cos α求功,此时F 是恒力. (2)利用动能定理或功能关系求功. (3)利用W =Pt 求功. 2.功率的计算方法(1)P =Wt :此式是功率的定义式,适用于任何情况下功率的计算,但常用于求解某段时间内的平均功率.(2)P =Fv cos α:此式一般计算瞬时功率,但当速度为平均速度v 时,功率P 为平均功率.质量为m =20 kg 的物体,在大小恒定的水平外力F 的作用下,沿水平面做直线运动.0~2 s 内F 与运动方向相反,2~4 s 内F 与运动方向相同,物体的v -t 图象如图1所示,g 取10 m/s 2,则( )思维导图知识要点A.拉力F 的大小为100 NB.物体在4 s 时拉力的瞬时功率为120 WC.4 s 内拉力所做的功为480 JD.4 s 内物体克服摩擦力做的功为320 J 【答案】 B【解析】 由图象可得:0~2 s 内物体做匀减速直线运动,加速度大小为:a 1=Δv Δt =102 m/s 2=5 m/s 2,匀减速过程有F +F f =ma 1.匀加速过程加速度大小为a 2=Δv ′Δt ′=22 m/s 2=1 m/s 2,有F -F f =ma 2,解得F f =40 N ,F =60 N ,故A 错误.物体在4 s 时拉力的瞬时功率为P =Fv =60×2 W =120 W ,故B 正确.4 s 内物体通过的位移为x =(12×2×10-12×2×2)m =8 m ,拉力做功为W =-Fx =-480 J ,故C 错误.4 s 内物体通过的路程为s =(12×2×10+12×2×2) m =12 m ,摩擦力做功为W f =-F f s =-40×12 J =-480 J ,故D 错误. (2019·广东佛山高一模拟)质量为2 kg 的小铁球从某一高度由静止释放,经3 s 到达地面,不计空气阻力,g 取10 m/s 2.则( )A .2 s 末重力的瞬时功率为200 WB .2 s 末重力的瞬时功率为400 WC .2 s 内重力的平均功率为100 WD .2 s 内重力的平均功率为400 W 【答案】:B【解析】:小铁球只受重力,做自由落体运动,2 s 末速度为v 1=gt 1=20 m/s ,下落2 s 末重力做功的瞬时功率P =mgv 1=2×10×20 W =400 W ,故选项A 错误,B 正确;2 s 内的位移为h 2=12gt 22=20 m ,所以前2 s 内重力的平均功率为P =mgh 2t 2=2×10×202W =200 W ,故选项C 、D 错误. 知识要点二:机车启动问题1.模型一 以恒定功率启动(1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:2.模型二 以恒定加速度启动 (1)动态过程(2)这一过程的P t 图象和v t 图象如图所示:3.三个重要关系式(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即v m =PF 阻.(2)机车以恒定加速度启动时,匀加速过程结束时功率最大,速度不是最大,即v =P F <v m =PF 阻.(3)机车以恒定功率运行时,牵引力做的功W =Pt ,由动能定理得Pt -F 阻x =ΔE k ,此式经常用于求解机车以恒定功率启动过程的位移或速度.一列火车总质量m =500 t ,发动机的额定功率P =6×105 W ,在轨道上行驶时,轨道对列车的阻力F f 是车重的0.01倍.(g 取10 m/s 2) (1)求列车在水平轨道上行驶的最大速度;(2)在水平轨道上,发动机以额定功率P 工作,求当行驶速度为v 1=1 m/s 和v 2=10 m/s 时,列车的瞬时加速度a 1、a 2的大小;(3)列车在水平轨道上以36 km/h 的速度匀速行驶时,求发动机的实际功率P ′;(4)若列车从静止开始,保持0.5 m/s 2的加速度做匀加速运动,求这一过程维持的最长时间. 【答案】:(1)12 m/s (2)1.1 m/s 2 0.02 m/s 2(3)5×105 W (4)4 s【解析】:(1)列车以额定功率行驶,当牵引力等于阻力,即F =F f =kmg 时,列车的加速度为零,速度达到最大值v m ,则v m =P F =P F f =P kmg=12 m/s.(2)当v <v m 时,列车做加速运动,若v 1=1 m/s ,则F 1=Pv 1=6×105 N ,根据牛顿第二定律得a 1=F 1-F fm =1.1 m/s 2若v 2=10 m/s ,则F 2=Pv 2=6×104 N根据牛顿第二定律得a 2=F 2-F fm=0.02 m/s 2.(3)当v =36 km/h =10 m/s 时,列车匀速运动,则发动机的实际功率P ′=F f v =5×105 W. (4)由牛顿第二定律得F ′=F f +ma =3×105 N在此过程中,速度增大,发动机功率增大,当功率为额定功率时速度为v ′,即v ′=PF ′=2 m/s ,由v ′=at 得t=v ′a=4 s. 分析机车启动问题常出现的三点错误(1)在机车功率公式P =Fv 中,F 是机车的牵引力而不是机车所受合力,当P =F f v m 时,牵引力与阻力平衡,机车达到最大运行速度.(2)恒定功率下的启动过程一定不是匀加速,匀变速直线运动的公式不适用,这种加速过程发动机做的功可用W =Pt 计算,不能用W =Fl 计算(因为F 是变力).(3)以恒定牵引力加速时的功率一定不恒定,这种加速过程发动机做的功常用W =Fl 计算,不能用W =Pt 计算(因为功率P 是变化的).知识要点三:动能定理的理解和应用1.对动能定理的理解(1)W总=W 1+W 2+W 3+…是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F 合l cos α。
功和能、机械能守恒定律第1课时 功 功率考点1.功1.功的公式:W=Fscos θ0≤θ< 90°力F 对物体做正功, θ= 90°力F 对物体不做功,90°<θ≤180° 力F 对物体做负功。
特别注意:①公式只适用于恒力做功②F 和S 是对应同一个物体的;③某力做的功仅由F 、S 决定, 与其它力是否存在以及物体的运动情况都无关。
2.重力的功:W G =mgh ——只跟物体的重力及物体移动的始终位置的高度差有关,跟移动的路径无关。
3.摩擦力的功(包括静摩擦力和滑动摩擦力)摩擦力可以做负功,摩擦力可以做正功,摩擦力可以不做功, 一对静摩擦力的总功一定等于0,一对滑动摩擦力的总功等于 - f ΔS 4.弹力的功(1)弹力对物体可以做正功可以不做功,也可以做负功。
(2)弹簧的弹力的功——W = 1/2 kx 12 – 1/2 kx 22(x 1、x 2为弹簧的形变量) 5.合力的功——有两种方法:(1)先求出合力,然后求总功,表达式为 ΣW =ΣF ×S ×cos θ(2)合力的功等于各分力所做功的代数和,即 ΣW =W 1 +W 2+W 3+……6.变力做功: 基本原则——过程分割与代数累积 (1)一般用动能定理W 合=ΔE K 求之;(2)也可用(微元法)无限分小法来求, 过程无限分小后,可认为每小段是恒力做功 (3)还可用F-S 图线下的“面积”计算.(4)或先寻求F 对S 的平均作用力F , S F W7.做功意义的理解问题:解决功能问题时,把握“功是能量转化的量度”这一要点,做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化例1.物体在合外力作用下做直线运动的v 一t 图象如图所示。
下列表述正确的是 A .在0—1s 内,合外力做正功B .在0—2s 内,合外力总是做负功C .在1—2s 内,合外力不做功D .在0—3s 内,合外力总是做正功考点2.功率 1. 定义式:tWP =,所求出的功率是时间t 内的平均功率。
《第七章机械能守恒定律》章末总结★知识网络构建
【教学过程】
★重难点一、求变力做功的几种方法★
一、功的正、负的判断和计算
1.如何判断力做功的正、负
(1)利用功的公式W=Fl cosα判断,此方法适用于判断恒力做功的情况。
(2)利用力F 与物体速度v 之间的夹角情况来判断。
设其夹角为α,若0≤α<π2,则力F 做正功;若α=π
2,则
力F 不做功;若π
2<α≤π,则力F 做负功。
此方法适用于曲线运动中功的分析。
(3)从能量角度分析,此方法既适用于恒力做功,也适用于变力做功。
根据功是能量转化的量度,若有
能量转化,则必有力对物体做功。
如果系统机械能增加,说明外界对系统做正功;如果系统机械能减少,说明外界对系统做负功 二、求变力做功的几种方法 1.用转换对象法求变力做功
W =Fl cos θ是恒力做功的计算公式,有些问题中求的是变力的功,我们可以利用转换对象法巧妙地将变力功转化为恒力功,从而使问题迎刃而解。
2.用微元法求变力做功
当力的大小不变、方向变化且位移的方向也同步变化时,可用微元法求解,此力做的功等于力和路程的乘积。
由于变力F 保持与速度在同一直线上,也可把往复运动或曲线运动的路线拉直考虑。
3.用动能定理法求变力做功
有些题目不能直接应用功的定义式来计算,我们可以借助动能定理来分析变力的功。
4.用图象法求变力做功
在F -x 图象中,图线和横轴所围成的面积表示力做的功。
一个看似复杂的变力做功问题,用常规方法无从下手,但通过图象变换,就使得解题过程简单明了。
5.用公式W =Pt 求变力做功
如果功率恒定、时间已知,可以用W =Pt 表达出牵引力做功。
6.求平均力将变力转化为恒力
如力是均匀变化的,可用求平均力的方法将变力转化为恒力。
★特别提醒 根据功能关系求功
根据以上功能关系,若能求出某种能量的变化,就可以求出相应的功。
【典型例题】在水平面上,有一弯曲的槽道AB 槽道由半径分别为
2
R
和R 的两个半圆构成.如图所示,现用大小恒为F 的拉力将一光滑小球从A 点沿槽道拉至B 点,若拉力F 的方向时时刻刻均与小球运动方向一致,则此过程中拉力所做的功为 ( )
A. 0
B. FR
C. 3
2
πFR D. 2πFR
【答案】 C
★重难点二、动能定理的理解及应用★
1.对动能定理的理解
(1)W总=W1+W2+W3+……是包含重力在内的所有力做功的代数和,若合外力为恒力,也可这样计算:W总=F合l cosα。
(2)动能定理是计算物体位移或速率的简捷公式,当题目中涉及位移时可优先考虑动能定理。
(3)做功的过程是能量转化的过程,动能定理表达式中的“=”的意义是一种因果联系的数值上相等的符号,它并不意味着“功就是动能增量”,也不意味着“功转变成了动能”,而是意味着“功引起物体动能的变化”。
(4)动能定理公式两边每一项都是标量,因此动能定理是一个标量方程。
2.应用动能定理的注意事项
(1)明确研究对象的研究过程,找出始、末状态的速度。
(2)对物体进行正确的受力分析(包括重力、弹力等),明确各力做的功大小及正、负情况。
(3)有些力在运动过程中不是始终存在,若物体运动过程中包含几个物理过程,物体运动状态、受力等情况均发生变化,则在考虑外力做功时,必须根据不同情况,分别对待。
(4)若物体运动过程中包含几个不同的物理过程,解题时,可以分段考虑,也可视为一个整体过程,列出动能定理求解。
【典型例题】如图甲所示,长为4m的水平轨道AB与半径为R=0.6m的竖直半圆弧轨道BC在B处相连接,有一质量为1kg的滑块(大小不计),从A处由静止开始受水平向右的力F作用,F的大小随位移变化关系如图乙所示,滑块与AB间动摩擦因数为0.25,与BC间的动摩擦因数未知,取g =l0m/s2。
求:
(1)滑块到达B 处时的速度大小;
(2)滑块在水平轨道AB 上运动前2m 过程中所需的时间;
(3)若滑块到达B 点时撤去力F ,滑块沿半圆弧轨道内侧上滑,并恰好能达到最高点C ,则滑块在半圆轨道上克服摩擦力所做的功是多少。
【答案】 (1)210/m s (2)
8
35
s (3)5J 【解析】 (1)对滑块从A 到B 的过程,由动能定理得 F 1x 1-F 3x 3-μmgx =
1
2mv B 2得v B =210m/s . (2)在前2 m 内,由牛顿第二定律得 F 1-μmg =ma 且x 1=
12
at 12 解得t 1=
835
s . (3)当滑块恰好能到达最高点C 时,有mg =m 2C
v R
对滑块从B 到C 的过程,由动能定理得 W -mg ×2R =
12mv C 2-1
2
mv B 2 代入数值得W =-5 J 即克服摩擦力做的功为5 J .
★重难点三、机械能守恒的判断及应用★ 1.机械能是否守恒的判断 (1)物体只受重力,只发生动能和重力势能的相互转化,如自由落体运动、抛体运动等,机械能不变。
(2)只有弹簧弹力做功,只发生动能和弹性势能的相互转化,如在光滑水平面上运动的物体碰到一个弹
簧,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒。
(3)系统受重力和弹簧的弹力,只有重力和弹力做功,只发生动能、弹性势能、重力势能的相互转化,如自由下落的物体落到竖直的弹簧上和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能不变。
(4)除受重力(或弹力)外,还受其他力,但其他力不做功,或其他力做功的代数和为零,如物体在沿斜面拉力F的作用下沿斜面向下运动,其拉力的大小与摩擦力的大小相等,在此运动过程中,其机械能不变。
只要满足上述条件之一,机械能一定守恒。
2.应用机械能守恒定律的解题思路
(1)明确研究对象,即哪些物体参与了动能和势能的相互转化,选择合适的初态和末态。
(2)分析物体的受力并分析各个力做功,看是否符合机械能守恒条件,只有符合条件才能应用机械能守恒定律。
(3)正确选择守恒定律的表达式列方程,可对分过程列式,也可对全过程列式。
(4)求解结果并说明物理意义。
3.机械能守恒定律和动能定理的比较
机械能守恒定律动能定理
不同点适用条
件
只有重力或弹力做功
没有条件限制,它不但允许重力和弹力做功,
还允许其他力做功
分析思
路
只需分析研究对象初、末状态的
动能和势能即可
不但要分析研究对象初、末状态的动能,还
要分析所有外力所做的功
研究对
象
一般是物体组成的系统一般是一个物体(质点)
书写方
式
有多种书写方式,一般常用等号
两边都是动能与势能的和
等号左边一定是合力的总功,右边则是动能
的变化
相同点(1)思想方法相同:机械能守恒定律和动能定理都是从做功和能量转化的角度,来研究物体在力的作用下状态的变化
(2)表达这两个规律的方程都是标量式
【典型例题】如图所示,粗糙弧形轨道和两个光滑半圆轨道组成翘尾巴的S形轨道.光滑半圆轨道半径为R,两个光滑半圆轨道连接处CD之间留有很小空隙,刚好能够使小球通过,CD之间距离可忽略.粗糙弧形轨道最高点A与水平面上B点之间的高度为h.从A点静止释放一个可视为质点的小球,小球沿翘尾巴的S 形轨道运动后从E点水平飞出,落到水平地面上,落点到与E点在同一竖直线上B点的距离为s.已知小球质量m,不计空气阻力,求:
(1)小球从E点水平飞出时的速度大小;
(2)小球运动到半圆轨道的B点时对轨道的压力;
(3)小球沿翘尾巴S形轨道运动时克服摩擦力做的功.
【答案】(1)
2
4
s g
R
(2)
2
2
9
8
mgs
mg
R
+,方向竖直向下;(3)()
2
4
16
mgs
mg h R
R
-
【解析】(1)小球从E点水平飞出做平抛运动,设小球从E点水平飞出时的速度大小为v E,由平抛运动规律得:s=v E t
4R=1
2
gt2
联立解得:
2
4
E
s g v
R =
(2)小球从B点运动到E点的过程,机械能守恒,根据机械能守恒定律得:1
2
mv B2=mg4R+
1
2
m v E2
解得:
2 28
8 B
s g v gR
R
+
=
在B点,根据牛顿第二定律得:
得:
2
2
9
8
mgs F mg
R
+
=
由牛顿第三定律可知小球运动到B点时对轨道的压力为
2
2
9
8
mgs
F mg
R
'+
=,方向竖直向下
(3)设小球沿翘尾巴的S形轨道运动时克服摩擦力做的功为W,则
mg(h−4R)−W=1
2
m v E2
得W=mg(h−4R)−
2 16 mgs
R。