《电路分析》第九章 正弦稳态功率和能量 三相电路解析
- 格式:ppt
- 大小:4.48 MB
- 文档页数:116
第九章(正弦稳态电路分析)习题解答一、选择题1.在图9—1所示的电路中,如果其等效导纳的模为21Y Y Y eq += ,则 。
A .L Y C Y ω-=ω=1j, j 21; B .C Y RY ω==j , 121;C .L Y R Y ω-==1j , 121 ;D .正为实数)k kY Y ( 21=2.图9—2(a )所示的电路为不含独立电源的线性一端口电路。
已知00 /100=UV ,045 /210=I A ,则图9—2(b )、9—2(c )、9—2(d )、9—2(e )四个电路中不是图9—2(a )的等效电路的为 。
A .图9—2(b );B .图9—2(c );C .图9—2(d );D .图9—2(e )3.电路如图9—3所示,Z 是一段不含独立源的电路。
开关断开时,瓦特表、电压表、电流表的读数分别是100W 、220V 和1A ;开关闭合时,瓦特表、电压表、电流表的读数分别是100W 、220V 和8.0A 。
那么Z 是 电路。
A .电阻性;B .容性;C .感性;D .不能确定4.电路如图9—4所示,U固定不变。
如果 ,则改变Z (Z 不等于无限大)时,I不变。
A .21Z Z =; B .21Z Z -=; C .21Z Z =; D .)Arg()Arg(21Z Z =5.Ω=10R 的电阻,F 1μ=C 的电容与电感L 串联,接到频率1000Hz 的正弦电压源上。
为使电阻两端的电压达到最高,电感应取 。
A .1H ;B .π21H; C .21H ; D .241πH二、填空题1.若Ω=3R ,Ω=ω6L ,Ω=ω2011C ,Ω=ω2012C ,则图9—5所示电路的输入阻抗为 j4)3(-Ω。
.2.线性一端口电路如图9—6所示,A /02 V ,30/5000=-=I U。
则此一端口电路吸收的复功率,有功功率、无功功率分别为V A 30/1000、W 350、50Var 。
第九章正弦稳态电路的分析本章内容1.阻抗和导纳的概念2.阻抗的串并联及电路的相量图3.正弦稳态电路的分析4.瞬时功率、有功功率、无功功率、视在功率、复功率及最大输出功率5.串联和并联谐振本章重点:正弦量的向量正表示; 正弦电路中的阻抗和导纳;正弦电路的分析串联谐振的谐振条件及特征; 并联谐振的谐振条件及特征本章重点:正弦电路参数的分析及最大功率输出的分析§9-1 阻抗和导纳阻抗和导纳是正弦电流电路分析的重要内容一、阻抗在无源的线性网络中,端口的电压相量与电流相量的比值定义为该一端口的阻抗(复阻抗),用Z表示。
式中:•U=U∠ϕu•I=I∠ϕI阻抗的模:Z= U/I,阻抗角:ϕZ= ϕu-ϕi 阻抗的代数式: Z=R+jX式中:R—电阻 X—电抗1.若网络N 0内只含单一元件,则单一元件的复阻抗(1)电阻的复阻抗:Z R =R(2)电感的复阻抗:Z L =ωj L=jX L X L =ωL —感抗 (3)电容的复阻抗:Z C =cj ω1=c jω1-=jX C X C =cω1-—容抗 2.若网络N 0内为RLC 串联,则阻抗为(1)阻抗:Z=•U /•I = R+ωj L+cj ω1=R+j(ωL-Cω1)=R+jx=Z ϕ∠Z可见:阻抗Z 的实部为电阻R (R=Z cos ϕZ ),阻抗Z 的虚部为电抗X (X= R=Z sin ϕZ ),三者构成阻抗三角形 (2) 阻抗的模:Z =22)(C L X X R -+=22X R +=U/I (3)阻抗角:ϕZ =arctanR X X C L -=RX=ϕu -ϕi X 〉0 ωL>C ω1电路呈电感性 X<0 ωL<Cω1电路呈电容性X=0 电路呈电阻性一、 导纳:复阻抗的倒数定义为复导纳(电流相量与对应端口的电流相量的比值),用Y 表示 Y=Z 1=••UI =)(u i U Iϕϕ-∠=Y Y ϕ∠导纳的模: Y =U I导纳角: Y ϕ=u i ϕϕ- 导纳的代数式: Y=G+JB式中:G —电导 B —电纳1.若网络N 0内只含单一元件,则单一元件的复阻抗 (1) 电阻的复导纳:Y R =G=1/R (2) 电感的复导纳:Y L =Lj ω1=L jω1- =jB L B L =Lω1-—感纳 (3)电容的复导纳:Z C ==ωj C =jB C B C =ωC —容纳2.若网络N 0内为RLC 并联,则导纳为(1)导纳Y=••UI基尔霍夫电流定律的相量形式:∑•I =0•I =•I R +•I L +•I C =⎥⎦⎤⎢⎣⎡-+)1(1L C j R ωω•U =G+j(B C +B L )•UY=R 1+L j ω1+ωj C=R1+)1(L C j ωω-=G+jB可见:导纳Y 的实部为电导G (G=Y cos ϕY ),导纳Y 的虚部为电纳B (B= Y sin ϕY ),三者构成导纳三角形 (2)导纳的模:Y =22)(L C B B G -+=22B G +=I/U (3)阻抗角:ϕY =arctanG B B L C -=GB=ϕi -ϕu B 〉0 ωC>L ω1电路呈电容性 B<0 ωC<Lω1电路呈电感性B=0 电路呈电阻性二、阻抗和导纳相互转换(自学)§9-2 阻抗(导纳)串联和并联阻抗的串并联与电阻的串并联的计算规则相同,只是要把电阻换成阻抗。