浅谈高速铁路轨道精调
- 格式:ppt
- 大小:6.97 MB
- 文档页数:60
高速铁路轨道精调作业论述高速鐵路轨道精调是确保线路开通高速运营安全的重要保证,轨道精调效果的好坏决定着线路开通条件。
轨道精调的目的旨在消除轨道病害,保证轨道的平顺性要求,满足列车高速行驶的需要。
高速铁路轨道调整是在联调联试之前根据轨道小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,消除施工造成的缺陷,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。
无缝线路铺设完成,长钢轨应力放散、锁定后即可开展轨道精调工作。
2 施工流程轨道精调作业程序为:轨道精调准备→CPⅢ平面高程复测→钢轨焊接、放散及锁定→轨道几何状态检查确认→轨道测量(数据采集、格式为CSV)→模拟试算调整→现场位置确定复核→更换扣件及调整→轨道几何状态验收检查确认。
3 轨道精调施工3.1轨道精调外业测量3.1.1全站仪设站作业前进行正倒镜检查全站仪水平角和竖角偏差,如果超过3秒,在气象条件较好的情况下进行组合校准及水平轴倾斜误差(α)校准;检查全站仪ATR照准是否准确,有无ATR的偏差也应少于3秒。
控制好设站精度、棱镜的安装等,自由设站的精度应符合要求,每一测站不大于70m。
全站仪和小车的测量设置次数应该不小于两次,然后取平均值。
全站仪测量设站尽可能设在墩顶位置。
对于连续梁地段要尽量缩短设站距离,如中跨为48米现浇梁,选择大约45米左右为一测站,测量出的数据较70m设站数据的离散性明显减少。
3.1.2轨道状态数据采集组装好轨检小车后,在厂家安装的轨道小车标定器进行标定,每天开始测量前校准一次,气温变化迅速时,需要再次进行校准;校准后在同一点进行正反两次测量,测量值之差应在0.3mm以内。
按精调小车操作程序对轨道逐个承轨台进行测量,观察数据变化,如果出现突变则检查全站仪各项指标是否超限,轨道小车是否异常,钢轨扣件是否拧紧,小车轮子是否沾染杂物,如果确实存在突变,则要记录清楚,以备后查。
浅谈高速铁路轨道精调摘要: 无砟轨道对线路平顺性、稳定性要求很高,因此线路必须具备准确的几何线性参数,大大提高轨道精调作业精度及工作效率,实现轨道平顺性要求。
关键词:轨道精调静态调整轨检小车数据采集优化调整削峰填谷中图分类号: u238 文献标识码: a 文章编号:轨道几何状态是衡量轨道铺设精度的关键指标,在轨道应力放散及锁定后,应对轨道的几何状态进行精细调整,是轨道的几何状态满足设计及规范要求。
为确保轨道的高平顺性,满足高速行车安全性和舒适性的要求,需要对轨道进行精细调整。
轨道精调的目的是控制轨道平面和高程位置的高精度及很小的轨距和水平变化率,确保直线顺直、曲线圆顺、过渡顺畅,实现动车组的平稳和舒适度。
要实现上述目标,首先是要转变既有的轨道调整理念,通过轨道测量数据和纸上作业,形成调整方案,而不是固有的以弦线道尺为主要手段的局部调整手段。
其次是采用科学的分析调整方法,在波形平顺的前提下,削峰填谷,消除超限处所。
轨道精调目前分为静态调整和联调联试期间的动态调整,静态调整是在联调联试之前根据轨检小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。
轨道静态精调流程:准备工作→轨道状态测量→调整量计算→现场标示→轨道调整→轨道复检准备工作cpiii复测对cpiii控制点进行全面复测,对缺损点进行恢复,过程中加以保护。
静态调整很关键,是轨道精调的重心,所以我们一定要重视,静态调整主要分为数据采集和现场实调两步,数据采集就是利用绝对轨检小车采集每个承轨台的空间位置与其实际空间位置的差值,然后利用软件对数据进行处理和优化得出最佳调整方案,现场实调就是技术人员根据调整方案对号入座对扣件进行调整使其达到设计空间位置。
现场实调完以后还得进行复测然后在进行现场扣件调整,直至满足联调联试的条件。
高速铁路轨道精调技术论文摘要:我国速铁路精调技术在目前尚处于摸索阶段,精调技术呈现百花齐放状态,本文结合湘桂铁路工程建设实践进行总结,今后还需通过不断的总结和研究,形成适合我国国情的高速铁路精调技术。
轨道精调是指对轨道工程质量进行全面检查,对轨道结构、钢轨、扣件系存在的问题进行整改;对轨道进行精测;制定精调方案,模拟计算轨道几何调整量;通过调整道床或更换扣件零部件,使轨道状态达到设计验收标准要求。
一、轨道精调前提条件线路已放散锁定;焊缝已打磨基本达标;CPIII网已进行全面检查和复测;轨道几何状态测量仪校核完成;有砟轨道轨距已逐枕测量达标;测量、数据分析与计算、技术交底、技术培训等准备工作充分;道床饱满,备砟充足,线路和道岔捣固车等准备就位,扣件调整件准备充足。
全线展开精调前,应在先行段取得充分的技术和组织管理经验。
二、轨道精调的基本内容和基本原则轨道精调由人工轨距精调和大机精捣二部分组成,轨距精调一般在联调联试动态检测前进行二遍调整,在联调联试动态检测期间针对个别超限处所进行处理,人工轨距精调因人员编组、熟练程度不同,一般按2-3Km/天的进度考虑;精捣应按轨道初始几何状态进行规划,一般每精捣一遍速度等级提高20-40Km/h,精捣进度一般按6-8Km/天考虑。
轨道精调应遵循以“最少调整量”和“削峰填谷”的原则来实现,总体目标达到直线顺直,曲线园顺。
并按照“先整体、后局部,先轨向、后轨距,先高低、后水平”的原则,优先保证参考轨的平顺性,另外一股钢轨通过轨距和水平控制。
三、施工准备1、组织管理,轨道精调工作量大,技术标准高和协调配合接口多,必须编制轨道精调专项施组,根据总体工作量、工期要求和设备资源情况提前划分精调作业段落,明确责任单位和责任人,明确轨道精调及相关工作分工,明确物资供应、工机具配置和劳力组织。
2、物资和工机具供应,按计划配备轨道几何状态测量仪、风动卸砟车、线路捣固车、道岔捣固车等轨道精调关键设备,组织落实道砟、扣件调整件等材料和配件供应,确保轨道精调有序进行。
浅谈高速铁路轨道精测精调技术作者:齐昌洋来源:《学习与科普》2019年第28期摘要:高速铁路轨道精测精调工作,关系者轨道的平顺性、安全性。
高速铁路轨道精测精调是一项精度要求极高、相互配合严密的工作,在具体作业时一定要十分认真、细致、稍不注意就会导致列车运行的重大事故。
本文主要通过对高速铁路轨道精测精调技术的轨检小车、作业流程、注意事项等问题进行分析探讨,以期对工程类似任务的开展提供参考。
关键词:高速铁路 ;轨道 ;精测精调高速铁路与普通铁路最大的区别就是高速行车、高可靠性、高平顺性,高安全性。
高速铁路的高安全性最终体现在轨道的高平顺性上。
轨道精测精调技术主要也是解决轨道的平顺性问题,其内容主要包括了轨道数据外业采集、数据内业精调、外业精调、质量回检等。
1轨检小车轨道几何状态测量仪,简称轨检仪,俗称“轨检小车”,是由轨道内部参数测量单元(轨距、超高、轨向、高低)和外部参数测量单元(轨道空间位置、横向和高程偏差)组成,其中内部测量单元可独立,外部测量单元需有其它测量设备(全站仪、CPIII棱镜组等)共同组成。
按照其测量方式以及测量的轨道参数,分为:静态测量的轨检仪和移动测量的轨检仪。
静态测量的轨道几何状态测量仪,也称“绝对测量小车”,可以静态测量的轨道内部参数有:轨距、超高,以及轨道空间位置、轨道偏差等外部参数。
绝对测量小车测量速度慢,但精度高,是第二代测量小车。
移动测量的轨道几何状态测量仪,也称“相对测量小车”,可以移动测量的轨道内部参数有轨距、超高、轨向、高低,无外部参数测量。
相对测量小车测量速度快,但精度低,为第一代测量小车。
近年来,国内厂家还综合绝对小车和相对小车的优缺点,研制出兼有相对和绝对测量功能的快速测量小车,也称“绝对+相对测量小车”,也就是第三代测量轨检小车,不仅可以移动测量轨道内部参数,也可以测量轨道的外部参数。
第四代的轨检仪将GPS定位与高速惯导相对测量融合在一起,创新性地研制出GPS+惯导轨检仪,它彻底放弃了绝对测量对线路CPIII控制网的依赖,利用GPS+高精度惯性导航系统测量得到线路的绝对坐标,高速惯导测量打破了普通移动测量移动速度不能超高8Km/h的限制,进一步提高了测量效率,为中、高动态环境下对轨道进行高精度实时连续定位提供了一种新的途径。
第二章高速铁路有砟、无砟轨道结构及精调第一节概述无砟轨道是以混凝土或沥青混合料等取代散粒道碴道床而组成的轨道结构形式。
由于无碴轨道具有轨道平顺性高、刚度均匀性好、轨道几何形位能持久保持、维修工作量显著减少等特点,在各国铁路得到了迅速发展。
特别是高速铁路,一些国家已把无碴轨道作为轨道的主要结构形式进行全面推广,并取得了显著的经济效益和社会效益。
以下是无砟轨道的主要优势和缺点。
一、无砟轨道的优势主要有:1、轨道结构稳定、质量均衡、变形量小,利于高速行车;2、变形积累慢,养护维修工作量小;3、使用寿命长—设计使用寿命60年;二、无砟轨道的缺点主要有:1、轨道造价高:有砟180万/km,双块式350万,1型板式450万,2 型板式500万。
2、对基础要求高因而显著提高修建成本:有砟轨道可允许15cm工后沉降,无砟轨道允许3cm,由此引起的以桥代路及路基加固投资巨大。
3、振动噪声大:减振降噪型无砟轨道目前尚不成功,减振无砟轨道选型存在较大困难。
4、一旦损坏整治困难:尤其是连续式无砟轨道。
第二节无砟轨道结构一、国外铁路无碴轨道结构型式国外铁路无碴轨道的发展,数量上经历了由少到多、技术上经历了由浅到深、品种上经历了由单一到多样、铺设范围上经历了由桥梁、隧道到路基、道岔的过程。
无碴轨道已成为高速铁路的发展趋势。
1.日本日本是发展无碴轨道最早的国家之一。
早在20世纪60年代中期,日本就开始了无碴轨道的研究与试验并逐步推广应用,无碴轨道比例愈来愈大,成为高速铁路轨道结构的主要形式。
据统计,日本高速铁路无碴轨道比例,在20世纪70年代达到60%以上,而90 年代则达到80%以上。
日本从20世纪60年代中期开始进行板式无碴轨道的研究到目前大规模的推广应用,走过了近40年的历程。
对于最初提出的轨道结构方案,铁道综合技术研究所相继进行了设计、部件试验、实尺模型试验、设计修改、在营业线上试铺等工作。
从津田沼、日野土木试验所内的实尺模型试验到既有线、新干线的桥梁、隧道和路基上的各种形式无碴轨道结构的试铺,总共建立了20多处近30km的试验段,开展了大量的室内、营业线上动力测试和长期观测的试验研究工作,并在试验结果的基础上,不断的改进、完善结构设计参数和技术条件,最终将普通A 型(图4-3)、框架形(图4-4)等板式轨道结构作为标准定型,在山阳、东北、上越、北陆和九州新干线的桥梁、隧道和路基上大量使用。
浅谈高速铁路无砟轨道正线长轨精调技术摘要:要想很好的对无砟轨道的精度进行控制,就要科学合理的对其测量,在此基础上有效的调整轨道的几何状态,该文章主要针对高速铁路无砟轨道正线长轨精调技术进行了分析,并且以哈牡客专轨道精调工作为例,对精调工作的内容以及注意事项进行了研究,希望能给有关部门带来帮助和参考。
关键词:高铁运行;无砟轨道;精调技术;分析探讨引言高速铁路随着国内经济的快速进步,而得到了很好的发展。
在对长钢轨进行精调之前,要进行合理的铺设和焊接,长钢轨的几何状态经过多次调整和修正之后,能够完全的符合验收标准,是轨道的质量符合要求,列车在运行过程中也能够保证质量合格。
1工程概况某铁路客运专线的铺轨正线里程是DK200+140~DK296+200,在此过程中包含了无砟轨道以及有砟轨道,前者的长度为31km,后者的长度为64km,属于双线铁路,列车在运行过程中时速为250km/h。
2轨道精调前期工作2.1轨道精调标准在对工程的进度进行调整时,要充分的考虑到工程的施工质量验收标准,以此为依据,开展具体的调整工作。
2.2内业准备业内准备工作在开展过程中需要使用到轨检小车采集软件,该软件内要有相应的设计数据,包括平曲线以及竖曲线等,在开展坐标系投影换代操作时,要做好特殊处理工作,在此过程中还需要对数据库进行建模,为了保证数据的准确,要及时的对其进行复核。
在开展轨道精调工作时,一般情况下会面临着比较高的要求,在此过程中,技术人员要做好自身的工作,结合工程项目实际施工情况和工期要求进行数据的采集和准备,提升整个工作的精准度和可靠性。
评估单位在开展常规精调工作之前,需要对CPⅢ控制网进行相应的评估,确保其是合格的,在对相应的成果进行导入时,要按照小车软件的标准开展具体的操作,确保长轨精调工作的有效进行。
3轨道精调注意事项(1)道岔前后200m应与道岔作为一个单独区间进行轨道静态数据采集和分析,并保持平顺性。
(2)在进行轨道数据采集时应合理划分每台轨检小车工作区段,同一台轨检小车应尽量连续测量,减少不同轨检小车间的搭接,避免系统误差对测量数据的影响。
浅谈高速铁路无砟轨道精调技术高速铁路轨道内、外部几何形态是保证动车组安全舒适运行的基础,因此无缝线路铺设后必须通过静态和动态检测来进行轨道精调工作,在运营期间,也需要按照一定周期检查轨道的几何形态,对轨道结构进行维修以达到轨道平顺度的允许偏差要求。
标签:高速铁路;无砟轨道;静态精调;动态精调高速铁路无砟轨道施工是个多工序过程,在众多工序中,精调工序是其中关键的工序。
轨道精调工作在无缝线路铺设完成后,长钢轨应力放散、锁定后即可开展。
轨道精调可分为静态调整和动态调整两个阶段。
1 静态精调静态调整是在联调联试之前,根据轨道静态测量数据将轨道几何尺寸调整到允许范围内。
合理控制轨距、水平、轨向、高低等变化率,对轨道线型进行优化调整,使轨道静态精度满足高速行车条件。
轨道精调主要采用精调小车进行检测,主要分为以下几个步骤:轨道控制网复测——轨道静态测量——轨道平顺度模拟试算——现场位置确定及复核——轨道静态调整——轨道状态检查确认。
1.1 CPⅢ控制网复测及使用经过了整个施工阶段,由于构筑物的沉降、箱梁的徐变,以及环境温度的变化,都会影响CPⅢ控制网的精度,所以在静态精调以前,必须复测整个CPⅢ控制网,重新审核评估。
CPⅢ平面控制网的复测工作主要以下几项内容:检查CPⅢ点有没有破坏、用全站仪对全线的CPⅢ点进行复测、对所测数据进行分析是否满足精度要求。
先对CPⅢ控制网标志进行全面检查,若有松动、损坏及埋设位置不正确的重新埋设并记录。
CPⅢ控制网应与原测网一致,采用自由设站交会网(后方交会)的方法测量。
复测宜联测与原测相同的高等级CPⅠ、CPⅡ控制点。
对于CPⅢ控制网复测成果存在系统性偏差或超限控制点超过20%的路段,应报设计院重新评估。
1.2 静态精调技术1.2.1 现场调整施工流程根据轨检小车采集的数据及软件调整的情况计算挡块及轨垫板材所需的规格,根据轨枕编号进行挡块及轨垫板的散放、松扣件、安装调整组件、放回并锁紧钢轨、重新测量;如有不合格的地方再进行一次调整。
高速铁路无砟轨道钢轨精调过程控制关键技术随着高速铁路建设的发展,无砟轨道钢轨的精调过程受到越来越多的关注。
在铁路运输中,无砟轨道钢轨经常会出现一些问题,例如不平整、曲率偏差、轨距不准等。
这些问题不仅会影响列车的运行稳定性和安全性,而且还会缩短钢轨的寿命,增加维修成本。
因此,针对高速铁路无砟轨道钢轨的精调过程进行控制是非常重要的,可以提高铁路运输的效率和安全性。
1. 轨道测量技术的应用在精调无砟轨道钢轨的过程中,轨道测量技术是非常重要的。
通过使用高精度的测量仪器和相应的软件,可以对钢轨的几何形状和位置进行精确测量,并对其进行分析和评估。
例如,可以测量轨距、曲率、高度差等参数,并根据实际情况调整钢轨的位置和高度。
通过轨道测量技术,可以达到精确控制无砟轨道钢轨的目的,提高铁路运输的效率和安全性。
2. 实时监控系统的使用3. 自动化控制技术的应用自动化控制技术是指利用计算机系统和控制器实现对无砟轨道钢轨自动化控制的技术。
通过将轨道测量技术和实时监控系统与自动化控制技术相结合,可以实现无砟轨道钢轨的自动化控制和调整,并且可以实现钢轨位置的精确控制和调整。
例如,可以根据列车的速度、载重等参数动态调整无砟轨道钢轨的高度和位置,保证列车的稳定性和安全性。
通过自动化控制技术,可以实现无砟轨道钢轨精调过程的自动化和智能化,提高其运输效率和安全性。
二、总结无砟轨道钢轨精调是高速铁路运输中非常重要的一环。
通过轨道测量技术、实时监控系统和自动化控制技术的应用,可以实现无砟轨道钢轨的精确控制和调整,提高铁路运输的效率和安全性。
在未来的高速铁路建设中,无砟轨道钢轨精调过程的控制将愈加重要,推动铁路运输的智能化、自动化和可持续发展。