高速铁路轨道精调
- 格式:ppt
- 大小:532.50 KB
- 文档页数:59
高速铁路轨道精调作业论述高速鐵路轨道精调是确保线路开通高速运营安全的重要保证,轨道精调效果的好坏决定着线路开通条件。
轨道精调的目的旨在消除轨道病害,保证轨道的平顺性要求,满足列车高速行驶的需要。
高速铁路轨道调整是在联调联试之前根据轨道小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,消除施工造成的缺陷,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。
无缝线路铺设完成,长钢轨应力放散、锁定后即可开展轨道精调工作。
2 施工流程轨道精调作业程序为:轨道精调准备→CPⅢ平面高程复测→钢轨焊接、放散及锁定→轨道几何状态检查确认→轨道测量(数据采集、格式为CSV)→模拟试算调整→现场位置确定复核→更换扣件及调整→轨道几何状态验收检查确认。
3 轨道精调施工3.1轨道精调外业测量3.1.1全站仪设站作业前进行正倒镜检查全站仪水平角和竖角偏差,如果超过3秒,在气象条件较好的情况下进行组合校准及水平轴倾斜误差(α)校准;检查全站仪ATR照准是否准确,有无ATR的偏差也应少于3秒。
控制好设站精度、棱镜的安装等,自由设站的精度应符合要求,每一测站不大于70m。
全站仪和小车的测量设置次数应该不小于两次,然后取平均值。
全站仪测量设站尽可能设在墩顶位置。
对于连续梁地段要尽量缩短设站距离,如中跨为48米现浇梁,选择大约45米左右为一测站,测量出的数据较70m设站数据的离散性明显减少。
3.1.2轨道状态数据采集组装好轨检小车后,在厂家安装的轨道小车标定器进行标定,每天开始测量前校准一次,气温变化迅速时,需要再次进行校准;校准后在同一点进行正反两次测量,测量值之差应在0.3mm以内。
按精调小车操作程序对轨道逐个承轨台进行测量,观察数据变化,如果出现突变则检查全站仪各项指标是否超限,轨道小车是否异常,钢轨扣件是否拧紧,小车轮子是否沾染杂物,如果确实存在突变,则要记录清楚,以备后查。
浅谈高速铁路轨道精调摘要: 无砟轨道对线路平顺性、稳定性要求很高,因此线路必须具备准确的几何线性参数,大大提高轨道精调作业精度及工作效率,实现轨道平顺性要求。
关键词:轨道精调静态调整轨检小车数据采集优化调整削峰填谷中图分类号: u238 文献标识码: a 文章编号:轨道几何状态是衡量轨道铺设精度的关键指标,在轨道应力放散及锁定后,应对轨道的几何状态进行精细调整,是轨道的几何状态满足设计及规范要求。
为确保轨道的高平顺性,满足高速行车安全性和舒适性的要求,需要对轨道进行精细调整。
轨道精调的目的是控制轨道平面和高程位置的高精度及很小的轨距和水平变化率,确保直线顺直、曲线圆顺、过渡顺畅,实现动车组的平稳和舒适度。
要实现上述目标,首先是要转变既有的轨道调整理念,通过轨道测量数据和纸上作业,形成调整方案,而不是固有的以弦线道尺为主要手段的局部调整手段。
其次是采用科学的分析调整方法,在波形平顺的前提下,削峰填谷,消除超限处所。
轨道精调目前分为静态调整和联调联试期间的动态调整,静态调整是在联调联试之前根据轨检小车静态测量数据对轨道进行全面、系统地调整,将轨道几何尺寸调整到允许范围内,对轨道线型(轨向和轨面高程)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足350km/h及以上高速行车条件。
轨道静态精调流程:准备工作→轨道状态测量→调整量计算→现场标示→轨道调整→轨道复检准备工作cpiii复测对cpiii控制点进行全面复测,对缺损点进行恢复,过程中加以保护。
静态调整很关键,是轨道精调的重心,所以我们一定要重视,静态调整主要分为数据采集和现场实调两步,数据采集就是利用绝对轨检小车采集每个承轨台的空间位置与其实际空间位置的差值,然后利用软件对数据进行处理和优化得出最佳调整方案,现场实调就是技术人员根据调整方案对号入座对扣件进行调整使其达到设计空间位置。
现场实调完以后还得进行复测然后在进行现场扣件调整,直至满足联调联试的条件。
京沪高速铁路轨道精调专项方案一、背景与意义京沪高速铁路是我国重要的高速铁路干线之一,连接着首都北京和经济中心上海,是国家重点发展的高铁项目。
为了确保铁路运营的安全和稳定,进一步提升铁路的运行效率和服务质量,京沪高速铁路轨道精调工作显得尤为重要。
本方案旨在对京沪高速铁路进行轨道精调,优化轨道结构,提高列车行驶的平稳性和稳定性,从而提升京沪高速铁路的运行水平。
二、工作内容与方法1.数据收集与分析:对京沪高速铁路各站点的轨道数据进行收集和整理,包括轨道末端、道岔、轨距等参数,以及列车运行数据。
对收集的数据进行分析,了解当前轨道状况和存在的问题。
2.轨道测量与检测:利用现代化的测量设备对京沪高速铁路进行轨道测量,检测轨道的偏差、高低差等问题。
通过精确的测量数据,为后续的轨道优化工作提供科学依据。
3.轨道精调方案设计:基于数据分析和测量检测结果,针对京沪高速铁路的具体情况,制定轨道精调方案。
方案包括对不平顺的轨道进行调整与修正,合理设置轨道补偿装置,优化道岔结构,提高轨距的一致性等。
4.轨道精调实施与监测:根据轨道精调方案,组织专业团队对京沪高速铁路进行实际的轨道精调工作,包括轨道调整、轨距调整、道岔优化等。
同时,建立全面的监测体系,对精调后的轨道进行跟踪监测,确保轨道精调效果的稳定和持久。
5.效果评估与改进:针对轨道精调后的效果,进行评估验证。
通过与之前的运行数据进行对比分析,评估轨道精调对列车运行平稳性和稳定性的影响。
同时,根据评估结果,对方案进行改进和优化,以进一步提高铁路运行水平。
三、预期成果与效益1.提升列车行驶的平稳性和稳定性:通过轨道精调工作,优化轨道结构,减小偏差和高低差等问题,提高列车行驶的平稳性和稳定性,降低列车运行时的颠簸和震动,为乘客提供更舒适的出行体验。
2.提高铁路运行效率和服务质量:轨道精调能够使列车在运行过程中减少摇晃和震动,提高运行的稳定性和可靠性,从而提高铁路的运行效率和服务质量,缩短行车时间,提升列车班次,满足旅客出行需求。
高速铁路长钢轨精调施工工法高速铁路长钢轨精调施工工法一、前言高速铁路长钢轨精调施工工法是用于高速铁路的道砟轨道调整,确保铁轨在运行中的平顺性和稳定性。
本文将介绍该工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施和经济技术分析,以及工程实例。
二、工法特点该工法具有以下特点:1. 精细调整:通过对铁轨底盘的调整,实现对铁轨的精细调整,使之符合设计要求。
2. 高效快速:采用机械化作业,大大提高了施工效率,缩短了施工周期。
3. 灵活性强:可根据实际情况进行细致调整,适应不同地质条件和线路特点。
4. 节约成本:采用先进的施工设备和技术,降低了施工成本,提高了工程质量。
三、适应范围该工法适用于高速铁路建设中的铁轨调整工程,可以发挥其实用性和效益性。
四、工艺原理该工法基于实际工程要求和铁路调整的原理,采取一系列技术措施来实现铁轨的精细调整。
其中包括:1.铁轨标高调整:根据设计要求和地质条件,通过调整铁轨的标高高度,保证铁轨在正常使用情况下的均衡和平稳。
2. 轨向调整:通过调整轨枕或者采取轨向改正器,使铁轨在水平和垂直方向上保持适当的线形。
3. 轨距调整:通过调整道岔间隔和道岔角度,使铁轨间的距离符合设计要求,确保列车行驶的平稳和安全。
五、施工工艺1. 施工准备:进行工地勘察和设计,在施工前对施工道路进行平整和修整,准备所需的机具设备和材料。
2. 铺砟层处理:对铺设砟石层的轨道进行整平处理,确保道砟层的平整度。
3. 铁轨安装:安装铁轨,按照设计要求进行标高、轨向和轨距的调整,同时进行检查和调整,确保安装准确。
4. 铺设道砟:将砟石料覆盖在铁轨上,用振动板进行压实和整平,形成稳定的道砟轨道。
5. 精调施工:利用精调车进行铁轨的微调和修整,密切关注轨道的平顺性和稳定性。
6. 质量检验:对施工过程中的质量进行检查和监控,确保施工质量符合设计要求。
六、劳动组织在施工中,需要配备合适的劳动力和技术人员,根据施工工艺的要求进行分工协作,确保施工顺利进行。
精调作业指导书一、工程概况哈大客运专线TJ-1标无砟轨道采用CRTS-Ⅰ型板式无砟轨道结构,扣件采用WJ-7B(G)轨道扣件系统。
直属大队无砟轨道精调自鞍辽特大桥0#台开始,到鞍辽特大桥586#台结束,全段总长19.178双线公里。
静态调整计划工期10月初开始至11月中旬,动态调整结合动车试验进行。
二、施工方案轨道精调工作在长钢轨铺设完成,并在设计轨温范围内放散、锁定后开展,哈大TJ-1标设计锁定轨温分区间和里程从12±3℃~25±5 ℃不等。
轨道精调分为静态调整和动态调整两个阶段。
静态调整阶段主要根据轨检小车静态测量数据对轨道几何状态进行不断完善的调整过程,包括对轨道线型(轨向和高低)进行优化调整,合理控制轨距变化率和水平变化率,使轨道静态精度满足规范要求。
动态调整阶段主要通过对动检车的数据进行分析,利用静态调整的方式对轨道进行调整。
通过两个阶段的调整,最终使得无砟轨道轨道状态满足动车组高速运行的舒适性和安全性要求。
无砟轨道静态平顺度允许偏差三、准备工作轨道精调前的准备工作主要包括轨道板的复测、扣件安装、CP Ⅲ的复测。
3.1轨道板的复测3.1.1轨道板复测流程图为保证后期钢轨的铺设及轨道精调,轨道板灌浆后7天或砂浆强度达到0.7MPa后,及时对轨道板进行复测,复测内容包括:高程、中线位置、CA砂浆四角离缝。
其中高程、中线位置复测采用螺栓孔速调标架的方法(与精调方式同)。
3.1.2轨道板复测结果轨道板复测后,应与前期精调数据及时进行分析对比,发现有下列情况者,必须揭板重新灌浆。
⑴轨道板横向或高程偏差;⑵凸台树脂厚度、CA砂浆四角离缝超标时。
3.2扣件安装WJ-7型扣件最大特点是对轨道方向及轨距无级调整。
但也因此带来了安装、调整的不便,增加了调整的工作量。
根据哈大公司要求,铺轨到达前7天,线下单位应完成除轨下橡胶垫板和绝缘块以外所有扣件的安装工作。
3.2.1扣件组成部分WJ-7型扣件由T型螺栓、螺母、平垫圈、弹条、绝缘块、铁垫板、轨下垫板、绝缘缓冲垫板、重型弹簧垫圈、平垫块、锚固螺栓和预埋套管组成,此外为了钢轨调高需要,还包括轨下调高垫板和铁垫板下调高垫板。
高速铁路有砟轨道精调施工工法高速铁路有砟轨道精调施工工法一、前言近年来,高速铁路建设取得了飞速的发展,有砟轨道作为铁路线路建设的主要形式之一,对于保证列车行驶的平稳性和安全性具有重要意义。
本文将介绍一种高速铁路有砟轨道精调施工工法,该工法具有以下几个特点。
二、工法特点• 精确调整:该工法采用先进的技术手段和精密的设备,能够实现对有砟轨道的精确调整,确保轨道线路的水平度和平顺度。
• 施工效率高:相比传统的调整工法,该工法在减少施工时间的同时,提高了施工效率,节约了人力和物力资源。
• 技术要求低:该工法操作简单,技术要求相对较低,能够降低施工人员的技能门槛,提高工人的施工效率。
三、适应范围该工法适用于高速铁路等有砟轨道的精细调整,尤其适用于有砟轨道弯道段、特殊地质条件下的轨道实施、轨道道床沉降调整等情况。
四、工艺原理该工法通过利用激光测量仪、数控机械设备等先进工具,结合实际工程情况,采取多种技术措施进行轨道线路的精确调整。
1. 第一步:激光测量仪测量轨道线路的水平度和高程。
2. 第二步:根据测量结果,通过调整道床、轨枕等方式对轨道线路进行调整,确保轨道线路的水平度和平顺度。
3. 第三步:使用数控机械设备对轨道进行修整,确保轨道的几何形状符合设计要求。
4. 第四步:经过若干次的测量和调整,达到设计要求的高速铁路有砟轨道。
五、施工工艺1. 准备工作:确定施工区域,清理施工现场,安装激光测量仪和数控机械设备。
2. 水平度测量:利用激光测量仪对轨道线路进行水平度测量,记录测量结果。
3. 调整工程:根据测量结果,调整轨道道床和轨枕,使轨道线路达到水平状态。
4. 数控机械修整:使用数控机械设备对轨道进行修整,确保轨道几何形状的符合设计要求。
5. 反复测量和调整:重复进行水平度测量、调整工程和数控机械修整,直至轨道达到高速铁路的施工要求。
六、劳动组织施工过程中,需要组织技术人员、激光测量员、机械操作工、助理人员等,确保施工工艺质量和施工进度。
浅谈高速铁路无砟轨道精调技术高速铁路轨道内、外部几何形态是保证动车组安全舒适运行的基础,因此无缝线路铺设后必须通过静态和动态检测来进行轨道精调工作,在运营期间,也需要按照一定周期检查轨道的几何形态,对轨道结构进行维修以达到轨道平顺度的允许偏差要求。
标签:高速铁路;无砟轨道;静态精调;动态精调高速铁路无砟轨道施工是个多工序过程,在众多工序中,精调工序是其中关键的工序。
轨道精调工作在无缝线路铺设完成后,长钢轨应力放散、锁定后即可开展。
轨道精调可分为静态调整和动态调整两个阶段。
1 静态精调静态调整是在联调联试之前,根据轨道静态测量数据将轨道几何尺寸调整到允许范围内。
合理控制轨距、水平、轨向、高低等变化率,对轨道线型进行优化调整,使轨道静态精度满足高速行车条件。
轨道精调主要采用精调小车进行检测,主要分为以下几个步骤:轨道控制网复测——轨道静态测量——轨道平顺度模拟试算——现场位置确定及复核——轨道静态调整——轨道状态检查确认。
1.1 CPⅢ控制网复测及使用经过了整个施工阶段,由于构筑物的沉降、箱梁的徐变,以及环境温度的变化,都会影响CPⅢ控制网的精度,所以在静态精调以前,必须复测整个CPⅢ控制网,重新审核评估。
CPⅢ平面控制网的复测工作主要以下几项内容:检查CPⅢ点有没有破坏、用全站仪对全线的CPⅢ点进行复测、对所测数据进行分析是否满足精度要求。
先对CPⅢ控制网标志进行全面检查,若有松动、损坏及埋设位置不正确的重新埋设并记录。
CPⅢ控制网应与原测网一致,采用自由设站交会网(后方交会)的方法测量。
复测宜联测与原测相同的高等级CPⅠ、CPⅡ控制点。
对于CPⅢ控制网复测成果存在系统性偏差或超限控制点超过20%的路段,应报设计院重新评估。
1.2 静态精调技术1.2.1 现场调整施工流程根据轨检小车采集的数据及软件调整的情况计算挡块及轨垫板材所需的规格,根据轨枕编号进行挡块及轨垫板的散放、松扣件、安装调整组件、放回并锁紧钢轨、重新测量;如有不合格的地方再进行一次调整。
高速铁路无砟轨道钢轨精调过程控制关键技术随着高速铁路建设的发展,无砟轨道钢轨的精调过程受到越来越多的关注。
在铁路运输中,无砟轨道钢轨经常会出现一些问题,例如不平整、曲率偏差、轨距不准等。
这些问题不仅会影响列车的运行稳定性和安全性,而且还会缩短钢轨的寿命,增加维修成本。
因此,针对高速铁路无砟轨道钢轨的精调过程进行控制是非常重要的,可以提高铁路运输的效率和安全性。
1. 轨道测量技术的应用在精调无砟轨道钢轨的过程中,轨道测量技术是非常重要的。
通过使用高精度的测量仪器和相应的软件,可以对钢轨的几何形状和位置进行精确测量,并对其进行分析和评估。
例如,可以测量轨距、曲率、高度差等参数,并根据实际情况调整钢轨的位置和高度。
通过轨道测量技术,可以达到精确控制无砟轨道钢轨的目的,提高铁路运输的效率和安全性。
2. 实时监控系统的使用3. 自动化控制技术的应用自动化控制技术是指利用计算机系统和控制器实现对无砟轨道钢轨自动化控制的技术。
通过将轨道测量技术和实时监控系统与自动化控制技术相结合,可以实现无砟轨道钢轨的自动化控制和调整,并且可以实现钢轨位置的精确控制和调整。
例如,可以根据列车的速度、载重等参数动态调整无砟轨道钢轨的高度和位置,保证列车的稳定性和安全性。
通过自动化控制技术,可以实现无砟轨道钢轨精调过程的自动化和智能化,提高其运输效率和安全性。
二、总结无砟轨道钢轨精调是高速铁路运输中非常重要的一环。
通过轨道测量技术、实时监控系统和自动化控制技术的应用,可以实现无砟轨道钢轨的精确控制和调整,提高铁路运输的效率和安全性。
在未来的高速铁路建设中,无砟轨道钢轨精调过程的控制将愈加重要,推动铁路运输的智能化、自动化和可持续发展。
高速铁路轨道精调施工技术摘要:高速铁路要求轨道具有高平顺性,除了在轨道施工期间保证精度以外,钢轨应力放散、锁定后的轨道精调是建设高平顺性轨道的关键环节。
轨道精调是铁路安全运营的基础环节,其质量对列车安全、平稳、高速行驶至关重要。
本文针对高速铁路轨道精调目标及施工技术进行分析,以供参考。
关键词:高速铁路;轨道精调施工技术一、高速铁路轨道精调对于高速铁路轨道精调施工来说,先进行整体调整,后进行局部调整,先进行轨向调整,后进行轨距调整,先进行高低调整,后进行水平调整是施工中必须遵守的处理原则。
在无砟轨道长轨铺设完毕且铁路线路锁定之后一直到铁路开通运营的期间,应用铁路轨道的几何状态测量仪器对铁路线路进行微小的、局部的状态调整,确保列车后续处于高速平稳的运行状态,这也就是高速铁路轨道精调的主要工作内容。
高速铁路的轨道精调施工可以分为两个部分,第一部分为静态精调施工,第二部分为动态精调施工,其中主要内容集中在静态调整这一部分,静态精调施工是指,在高速铁路轨道网络进行正式联合调试之前,对高速铁路轨道的静态数据收集分析,根据数据分析结果判断轨道中存在的各类状态缺陷,然后制定对应的调整方案,优化铁路轨道状态。
静态精调施工达标之后,才能开展后续的联合调试工作。
铁路精调动态调整过程是指根据对于联合调试阶段轨道相关动态数据进行收集分析之后,判断其中是否有无存在异常,然后将数据进行比对,采取调整措施消除轨道存在的异常问题,通过轨道精调施工能够充分保证其平顺性,确保高速列车运行期间能够满足舒适度要求,达到相应的安全运行标准。
二、高速铁路轨道精调目标分析之所以要进行轨道精调施工,主要目标就是确保轨道平面和其高程位置处于精准状态,保证轨道具有较小的轨距及水平变化率。
使得高速铁路轨道曲线处于圆滑状态、直线处于顺直状态、过渡区域流畅,满足平顺运行的标准。
想要实现这一目标的,需要优化固有的轨道调整理念,借助轨道的测量数据和纸上模拟等方式明确轨道调整方案,而不是应用传统的局部调整方式。
高速铁路轨道平顺性检测及精调技术浅析摘要:轨道平面形状的舒适度对高铁线路的精细调整起着非常重要的作用,是高铁施工和行车安全的主要影响因素。
在此基础上,完善高铁轨面平面度的理论与计算模型,并针对轨面平面度的要求,建立适合高铁轨面平面度的精调式全站仪轨面平面度的优化设计模型。
关键词:高速铁路;轨道几何平顺性;轨道精调目前,国内多条正在建设或正在运行的旅客干线,其运行时速均可超过250 km/h,对其安全性、平顺性及舒适度提出了更高的要求。
本项目以检测轨台精调为核心,基于检测轨台精调检测结果及平稳性控制目标,通过对轨台精调检测结果及平稳性的分析,实现对轨台直线度的最优,实现车轮与钢轨的最优配合,从而提升行车安全性、平稳性及舒适性。
从这一点上,在精密调整中,轨道的几何舒适性是其关键。
但实际应用中发现,采用该方式对高速铁路进行精细调节时,常需经过多轮的反复调节,方能达到预期的效果。
以提升铁路精调工程建设的品质与速度为目标,重点开展基于理论分析与数值模拟的铁路精调线设计与优化、铁路工程建设与运营管理等方面的理论与技术创新、工程建设与管理创新等方面的工作与理论技术支撑等方面的深入研究。
1轨道平顺性指标1.1静态指标按照TB10754-2010 《高速铁路轨道工程施工质量验收标准》中规定的线路静舒适性的主要技术参数,绘制了线路静舒适性的曲线。
在舒适性指数中,高低与轨向是最为关键的两项,高低与轨向是指轨道在纵向上的高低与轨向之间的偏差。
图1 高速铁路轨道平顺性指标1.2动态指标铁路的动态平顺性指数由两个主要的因素组成,一个是由动力探测得到的铁路几何状况,另一个是由列车的动力反应得到的铁路几何状况,这两个因素都是由铁路的动力探测得到的。
动态响应的常规检测内容包括了:轮轨垂直和横向作用力、脱轨系数、轮重减载率和轮轴横向力、转向架构架和轴箱的横向和竖向加速度等车辆动态响应稳定性指标、车体横向和竖向加速度、车体平稳性指标、车体横向加速度变化率等。
高速铁路有砟轨道精调施工工法高速铁路有砟轨道精调施工工法一、前言随着高速铁路建设的不断推进,有砟轨道精调施工工法在铁路施工中起着重要的作用。
该工法能够有效改善铁路线路的平整度和稳定性,提高列车运行的舒适性和安全性。
本文将详细介绍有砟轨道精调施工工法的特点、适应范围、工艺原理、施工工艺、劳动组织、机具设备、质量控制、安全措施、经济技术分析以及相关的工程实例。
二、工法特点有砟轨道精调施工工法通过调整砟石的厚度、布放密度和固结度,使轨道线路达到设计要求,具有以下特点:1. 精确度高:能够精确控制砟石的厚度和布放密度,保证轨道线路的平整度和强度。
2. 高效性:采用先进的施工工艺和机具设备,能够快速完成施工任务,提高工作效率。
3. 灵活性强:能够根据不同的设计要求和实际情况进行调整,适应不同地区和不同条件下的施工需求。
4. 成本低:相比于传统施工方法,有砟轨道精调施工工法具有更低的成本,能够降低工程造价。
5. 系统化:引入先进的施工管理技术,实施全过程的质量控制和安全措施,保证施工的质量和安全。
三、适应范围有砟轨道精调施工工法适用于各类高速铁路线路的建设和维护,包括新建线路、改造线路和维修线路。
无论是平原地区、山区还是高寒地区,都能够使用该工法实施精确的轨道调整和修整。
四、工艺原理有砟轨道精调施工工法的理论依据是通过砟石的调整和固结,改善轨道的平整度和稳定性。
在实际工程中,通过以下技术措施实现:1. 砟石调整:根据设计要求,对轨道的砟石进行调整,调整砟石的厚度和布放密度,使轨道线路达到平整度和强度的要求。
2. 砟石固结:通过添加固结剂,提高砟石的固结度和粘结力,增加轨道的稳定性和承载能力。
3. 砟石加固:在轨道的重要部位,采用加固措施,如加设加筋板、增加砟石厚度等,增加轨道的强度和稳定性。
五、施工工艺有砟轨道精调施工工法包括以下几个施工阶段:1. 前期准备:确定施工计划、布置施工场地、组织劳动力和机具设备。