人教版七第2课时算术平方根的大小比较及用计算器求算算术平方根
- 格式:ppt
- 大小:1.26 MB
- 文档页数:15
6.1.2 用计算器求算术平方根及其大小比较教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级下册(以下统称“教材”)第六章“实数”6.1.2 用计算器求算术平方根及其大小比较,内容包括:用计算器求算术平方根、算术平方根的估算及大小比较.2.内容解析本节课的内容是义务教育课程标准(实验教科书人民教育出版社)七年级数学下册第六章第一节第课时《用计算器求算术平方根及其大小比较》.本节课主要是前面学习的算术平方根的延续.夹值法应用为后面学习实数做知识准备,为解得估算作铺垫,提供知识积累.基于以上分析,确定本节课的教学重点为:掌握算术平方根的估算及大小比较.二、目标和目标解析1.目标(1)会用计算器求算术平方根.(2)掌握算术平方根的估算及大小比较.2.目标解析会用计算器求一个数的算术平方根;理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.能用夹值法求一个数的算术平方根的近似值.通过求一个数的算术平方根的近似值,初步了解开方开不尽的数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.三、教学问题诊断分析学生对算术平方根已经有了初步的认识,但运用不够灵活;学生也经历过一些探索,但还不够系统、全面,教师在具体课堂中应把握好这些特点.基于以上学情分析,确定本节课的教学难点为:会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识.四、教学过程设计自学导航求下列各数的算术平方根,并用“<”分别把被开方数和算术平方根连接起来.1,4,9,16,25.解:1=1,4=2,9=3,16=4,25=5.比较结果:1<4<9<16<25,1<4<9<16<25.被开方数越大,对应的算术平方根也越大. 若a>b>0,则a>b>0.合作探究探究:能否用两个面积为1dm2的小正方形拼成一个面积为2dm2的大正方形?你知道这个大正方形的边长是多少吗?设大正方形的边长为x,则x2=2,由算术平方根的意义可知x=2,所以大正方形的边长是2dm.小正方形的对角线的长是多少呢?2有多大呢?因为 12=1,22=4,所以 1<2<2因为 1.42=1.96,1.52=2.25,所以 1.4<2<1.5因为 1.412=1.9881,1.422=2.0164,所以 1.41<2<1.42因为 1.4142=1.999396,1.4152=2.002225,所以 1.414<2<1.415……事实上,2=1.414213562373…,它是一个无限不循环小数.(无限不循环小数是指小数位数无限,且小数部分不循环的小数.)π也是一个无限不循小数.实际上,许多正有理数的算术平方根(例如3,5,7等)都是无限不循小数.考点解析考点1:用计算器求一个正数的算术平方根大多数计算器都有键,用它可以求出一个正有理数的算术平方根(或其近似值).例1.用计算器求下列各式的值:(1) 3136 (2) 2 (精确到0.001)解:(1)依次按键3136=,显示:56,∴3136=56(2)依次按键2=,显示:1.4142135623731,∴2≈1.414注:计算器上显示的1.4142135623731是2的近似值.【迁移应用】1.用计算器求下列各式的值:(1)√260.8≈________(精确到0.01); (2)√6≈________(精确到0.001).2.依次按键225,显示的结果是( )A.±15B.15C.-15D.253.用计算器求下列各式的值:(1)√4225; (2)-√4.3265(精确到0.01).解:(1) √4226=65; (2) -√2≈-2.08.考点2:估算算术平方根例2.√24的值在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间 解析:因为16<24<25,所以√16<√24<√25,即4<√24<5.故√24的值在4和5之间.【迁移应用】1.估计√54-4的值在( )A.6到7之间B.5到6之间C.4到5之间D.3到4之间2.已知a ,b 是两个连续整数,且a<√20<b ,则a+b=_____.3.与√3最接近的整数是_____.4.满足√2<x<√10的整数x 有_____个.考点3:估算算术平方根例3.比较下列各组数的大小:(1)√82与9; (2)√3−12与12; (3)-√5+1与-√22. 解:(1)因为92=81,所以√81=9.因为82>81,所以√82>√81,即√82>9.(2)因为1<√3<2,所以0<√3-1<1,所以√3−12<12. (3)-√5+1≈-2.236+1=-1.236,-√22≈-1.414÷2=-0.707.因为-1.236<-0.707,所以-√5+1<-√22.【迁移应用】1.比较大小:√3+15____35.2.比较下列各组数的大小:(1)√12与√14; (2) √24−12与32. 解:(1)因为12<14,所以√12<√14.(2)因为4<√24<5,所以3<√24-1<4,所以√24−12>32. 考点4:估算算术平方根例4.用两个面积为200cm 2的小正方形拼成一个大正方形.(1)大正方形的边长是_______;(2)若沿着大正方形边的方向裁出一个长方形,能否使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2?解:(2)设长方形纸片的长为5xcm ,则宽为4xcm.根据题意,得5x·4x=360,所以x=√18.所以长方形纸片的长为5√18cm.因为18>16,所以√18>√16,即5√18>4.由上可知5√18>20,所以沿着大正方形边的方向裁出一个长方形,不能使裁出的长方形纸片的长、宽之比为5:4,且面积为360cm 2【迁移应用】1.小丽想用一张面积为36cm 2的正方形纸片(如图所示),沿着边的方向裁出一张面积为20cm 2的长方形纸片,且它的长是宽的2倍.你认为小丽能用这张纸片裁出符合要求的纸片吗?为什么?解:不能.理由如下:因为正方形的面积为36cm2,所以边长为√36=6(cm).设长方形的宽为xcm,则长为2xcm.根据题意,得2x·x=2×2=20,即x2=10,所以x=√10,所以长方形的长为2√10cm.因为10>9,所以√10>3.由上可知2√10>6,即长方形的长大于正方形的边长,所以不能裁出符合要求的长方形纸片.2.国际比赛的足球场的长在100m到110m之间,宽在64m到75m之间.如图,为了迎接某次奥运会,某地建设了一个长方形的足球场,其长是宽的1.5倍,面积是7560m2,请你判断这个足球场能否用作国际比赛,并说明理由.解:这个足球场能用作国际比赛.理由如下:设足球场的宽为xm,则足球场的长为1.5xm.由题意,得1.5x2= 7560,所以x2=5040.所以x=√5040.因为702=4900,712=5041,所以70<√5040<71,所以105<1.5×√5040<106.5.所以符合要求.所以这个足球场能用作国际比赛.合作探究探究:(1)利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?规律:_________________________________________________________________________ (2) 用计算器计算3≈______(精确到0.001),并利用你在(1)中发现的规律说03.0≈______,300≈______,30000≈______的近似值.你能根据3的值说出30是多少吗?考点解析考点5:算术平方根的规律探究例5.【从特殊到一般的思想】(1)利用计算器计算,将结果填入表中,你发现了什么规律?(2)用计算器计算√5≈_______(精确到0.001),并用上述规律直接写出:√0.05≈______;√500≈ ______;√50000≈ ______.发现规律:被开方数的小数点向左(或向右)移动2位,它的算术平方根的小数点相应地向左(或向右)移动1位.【迁移应用】1.已知√15≈3.873,则√150000≈_______;若√a≈0.3873,则a≈_____.2.(1)利用计算器计算:①√11−2=_____;②√1111−22=_____;③√111111−222=_______.。
《用计算器求算术平方根及其大小比较》教案教学目标:1.理解算术平方根的概念,并能用计算器求算术平方根;2.掌握如何使用计算器进行数值比较;3.培养学生的计算器使用能力和数学思维能力。
教学重点:1.理解算术平方根的概念;2.掌握使用计算器求算术平方根;3.学会使用计算器进行数值比较。
教学难点:1.如何使用计算器求算术平方根;2.如何使用计算器进行数值比较。
教学准备:1.教师准备一个计算器;2.打印好教案和对应的练习题。
教学过程:Step 1 导入新课教师与学生简单交流,引导学生回顾上节课学习的内容。
然后教师提出本节课的新课目标:学会使用计算器求算术平方根,并能够使用计算器进行数值比较。
Step 2 讲解算术平方根的概念教师通过示意图和实例,简要讲解算术平方根的概念。
然后引导学生回答以下问题:1.什么是算术平方根?2.如何求一个数的算术平方根?3.算术平方根有什么特点?Step 3 使用计算器求算术平方根教师向学生介绍如何使用计算器求算术平方根,主要包括以下步骤:1.打开计算器;2.输入待求算术平方根的数;3.按下求平方根的功能键;4.计算器给出结果。
在讲解的过程中,教师可以实际操作计算器演示给学生看,并要求学生跟着操作。
Step 4 讲解大小比较的方法教师向学生介绍如何使用计算器进行大小比较,主要包括以下步骤:1.打开计算器;2.输入两个待比较的数;3.按下比较大小的功能键;4.计算器给出比较结果。
在讲解的过程中,教师可以实际操作计算器演示给学生看,并要求学生跟着操作。
Step 5 练习教师分发练习题给学生,让学生自主完成练习。
然后教师在黑板上给出练习题的答案,并让学生互相核对答案。
Step 6 小结教师向学生简要总结今天的学习内容,并强调重点和难点。
然后提醒学生多进行实践操作,加深对计算器使用的熟悉程度。
Step 7 作业布置教师布置作业,要求学生用计算器求解一些数的算术平方根,并进行大小比较。
数学七年级下学期《用计算器求算术平方根及其大小比较》教学设计一. 教材分析《用计算器求算术平方根及其大小比较》这一节内容,主要让学生掌握如何使用计算器求解算术平方根,以及如何比较不同数的大小。
教材通过具体的例子,引导学生了解算术平方根的概念,以及计算器在求解过程中的应用。
本节内容是学生在七年级数学学习过程中的重要组成部分,也是学生数学思维能力的一次提升。
二. 学情分析学生在进入七年级下学期时,已经具备了一定的数学基础,对数学知识有一定的理解。
但计算器的使用在数学课堂中还属于新生事物,学生可能对其存在好奇心和陌生感。
因此,在教学过程中,教师需要关注学生的学习兴趣,引导学生正确使用计算器,提高他们的数学解题能力。
三. 教学目标1.知识与技能目标:让学生掌握用计算器求算术平方根的方法,能熟练使用计算器进行计算。
2.过程与方法目标:通过小组合作,培养学生运用计算器解决数学问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们善于动脑、动手的能力。
四. 教学重难点1.重点:用计算器求算术平方根的方法。
2.难点:如何比较不同数的算术平方根的大小。
五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生运用计算器求解。
2.小组合作学习:让学生在小组内互相交流、讨论,共同解决问题。
3.实例教学法:通过具体的例子,讲解算术平方根的概念及求解方法。
六. 教学准备1.准备计算器,确保每名学生都有机会使用。
2.准备相关的数学题目,用于练习和巩固。
3.准备PPT或黑板,用于展示解题过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引入本节内容。
例如:“请问5的平方根是多少?”然后引导学生思考:“我们如何用计算器快速求解这个问题?”2.呈现(10分钟)教师通过PPT或黑板,展示算术平方根的定义,以及如何使用计算器求解。
同时,解释算术平方根的概念,以及计算器在求解过程中的应用。
3.操练(10分钟)教师发放练习题,学生独立或小组合作,使用计算器求解。
第2课时数的估计及大小比较关键问答①用计算器计算一个正数的算术平方根的步骤是什么?②估算一个正数的算术平方根的大小时,常需要用到什么知识?③比较两个数的大小的方法有哪些?1.①用计算器计算44.86的值为(精确到0.01)()A.6.69 B.6.7 C.6.70 D.±6.702.②2017·天津估计38的值在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间3.③比较大小:10__________11.命题点1用计算器求正数的算术平方根[热度:86%]4.2017·淄博运用科学计算器(如图6-1-1是其面板的部分截图)进行计算,按键顺序如下:图6-1-1( 3.5- 4.5)×3x2+4则计算器显示的结果是________.5.天气晴朗时,一个人能看到大海的最远距离s(单位:km)可用公式s2=16.88h来估计,其中h(单位:m)是眼睛离海平面的高度.如果一个人站在岸边观察,当眼睛离海平面的高度是1.5 m时,能看到多远(精确到0.01 km)?如果登上一个观望台,当眼睛离海平面的高度是35 m时,能看到多远(精确到0.01 km)?命题点2数的估算[热度:88%]6.④2018·台州估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间解题突破④7介于哪两个连续整数之间?7.⑤17的整数部分是__________,小数部分是________.模型建立⑤若a(a>0)的整数部分为n,则其小数部分为a-n.8.规定用符号[x]表示一个数的整数部分,例如[3.69]=3,[3]=1,按此规定[13-1]=________.9.⑥如图6-1-2所示,在数轴上点A和点B之间表示整数的点有________个.图6-1-2⑥-2与7分别介于哪两个连续整数之间?10.⑦用“逐步逼近”的方法可以求出7的近似值.先阅读,再答题:因为22<7<32,所以2<7<3.第一步:取2+32=2.5,由2.52=6.25<7,得2.5<7<3. 第二步:取2.5+32=2.75,由2.752=7.5625>7,得2.5<7<2.75. 请你继续上面的步骤,写出第三步,并通过第三步的结论对7十分位上的数字作估计. 方法点拨⑦本题需先取数,再计算所取数的平方,最后比较大小.命题点 3 数的大小比较 [热度:92%]11.在数-5,0,3,2中,比3大的数是( )A .-5B .0C .3 D. 212.⑧2017·酒泉 估计5-12与0.5的大小关系:5-12________0.5(填“>”“<”或“=”). 方法点拨 ⑧作差法是比较两个数大小的一种常用方法.13.比较5-3与5-22的大小.命题点 4 算术平方根的应用 [热度:94%]14.工人师傅准备从一块面积为25平方分米的正方形工料上裁剪出一块面积为18平方分米的长方形的工件.(1)求正方形工料的边长;(2)若要求裁下来的长方形工件的长和宽的比为3∶2,则能用这块正方形工料裁剪出符合要求的长方形工件吗?15.⑨在地球引力的作用下,物体从某一高度落下,速度会越来越快,即地球引力会使下落的物体加速下落.在物理学中,把地球引力给下落物体带来的加速度称为重力加速度,用g 表示,g =9.8 m/s 2,物体自由下落的高度h (m)与物体下落的时间t (s)之间的函数关系是h =12gt 2.某人头顶上空490 m 处有一杀伤半径为50 m 的炸弹自由下落,此人发现后,立即以6 m/s 的速度逃离,那么此人能脱离危险吗?⑨炸弹落在地面上的时间是多少?在这个时间内,此人跑的路程是多少?16.⑩一个标有高度的圆柱形容器,加入一些水后观察水面高度如图6-1-3①所示,这时将一个直径为2 cm的圆柱形玻璃棒竖直插至容器底部,水面高度如图②所示,求容器的内口直径(圆柱的容积=底面圆面积×高).(精确到0.1 cm)图6-1-3解题突破⑩玻璃棒在水中部分的体积是多少?容器中插入玻璃棒后,水面以下部分的体积比原来多了多少?17.⑪用计算器计算:(1)9×9+19=__________;(2)99×99+199=__________;(3)999×999+1999=__________;(4)9999×9999+19999=__________.观察上面几题的结果,你能发现什么规律?用你发现的规律直接写出下题的结果:__________.方法点拨⑪利用计算器计算结果,观察9的个数与结果之间存在的规律.典题讲评与答案详析1.C 2.C 3.<4.-7 [解析] 根据按键顺序可得算式为(3.5-4.5)×32+4=(-1)×9+2=-9+2 =-7.5.解:把h =1.5代入s 2=16.88h ,得s 2=16.88×1.5=25.32,所以s ≈5.03. 即当眼睛离海平面的高度是1.5 m 时,能看到的最远距离约为5.03 km.把h =35代入s 2=16.88h ,得s 2=16.88×35=590.8,所以s ≈24.31.即当眼睛离海平面的高度是35 m 时,能看到的最远距离约为24.31 km.6.B [解析] 由于2<7<3,所以7+1的值在3和4之间.7.4 17-48.2 [解析]∵3<13<4,∴2<13-1<3,∴[13-1]=2.9.4 [解析] 由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A ,B 两点之间的整数点有4个.10.解:第三步:取2.5+2.752=2.625, 由2.6252=6.890625<7,得2.625<7<2.75, 所以7十分位上的数字可能是6或7.11.C12.> [解析]∵0.5=12,又5>2,∴5-1>1,即5-12>12. 13.解:∵4<5<9,∴2<5<3,∴5-3<0,5-22>0,∴5-3<5-22. 14.解:(1)5分米.(2)设长方形工件的长为3x (x >0)分米,宽为2x (x >0)分米.根据题意,得3x ·2x =18,解得x = 3.∴长方形工件的长为3 3分米,宽为2 3分米.∵3 3>5,∴不能用这块正方形工料裁剪出符合要求的长方形工件.15.解:能脱离危险.当h =490时,即490=12×9.8×t 2,解得t =10, 在这个时间内,此人跑的路程为6×10=60(m)>50 m ,所以此人能脱离危险.16.解:圆柱形玻璃棒的底面半径为2÷2=1(cm).设圆柱形容器的内口半径为r cm ,则有πr 2×(8-7)=π×12×8,πr 2=8π,r 2=8,r =8,所以圆柱形容器的内口直径为2×8=2 8≈5.7(cm).17.(1)10 (2)100 (3)1000【关键问答】①先按键,再输入这个正数,最后按=键.②一个正数越大,它的算术平方根越大;另外需记住正整数如2,3,5等的算术平方根.③正数大于0,0大于负数,正数大于负数,两个负数比较大小时,绝对值大的负数反而小.还可以用作差法、作商法等.。
七年级上册数学教案《用计算器求算术平方根及其大小比较》教学目标1、会用计算器求一个正数的算术平方根。
2、掌握算术平方根的估算和大小比较。
教学重点会用计算器求一个正数的算术平方根。
教学难点掌握算术平方根的估算和大小比较。
教学过程一、新课导入求一个正数的算术平方根,有些数可以直接得出结果,但有些数必须借助计算器。
比如:0.46259,那么,如何借助计算器来求一个正数的算术平方根?二、探究新知1、用计算器求各式的值。
(1)√3136依次按键3136,显示:56。
∴√3136 = 56。
(2)√2(精确到0.001)依次按键2,显示:1.414213562。
∴√2 ≈ 1.414。
2、同学们,你们知道宇宙飞船离开地球进入底面附近轨道的速度在什么范围内吗?这时它的速度要大于第一宇宙速度v1(单位:m/s),而小于第二宇宙速度v2(单位:m/s),v1,v2的大小满足v12 = gR,v22 = 2gR,其中g是物理中的一个常数(重力加速度),g≈9.8m/s2,R是地球半径,R≈6.4 × 106m,怎样求V1,V2呢?这就要用到平方根的概念。
由v12 = gR,v22 = 2gR,得v1=√gR,v2 =√2gR,其中g≈9.8,R≈6.4 × 106。
用计算器求v1和v2(用科学记数法把结果写成a×10n的形式,其中a保留小数点后一位),得v1≈√9.8 × 6.4 ×106 ≈ 7.9 × 103v2≈√2×9.8 × 6.4 ×106 ≈ 1.1 × 104因此,第一宇宙速度v1大约是7.9 × 103 m/s,第二宇宙速度v2大约是1.1 × 104m/s。
3、估算一个数的大小(1)探究:利用计算器计算下表中的算术平方根,并将计算结果填在表中,你发现了什么规律?你能说出其中的道理吗?√0.0625 √0.625 √6.25 √625 √6.250 √625000.25 0.79 2.5 25 2.5 250小结:被开方数的小数点向左或向右移动2n位时,平方根的小数点就相应的向左或向右移动n位。
第2课时用计算器求算术平方根及其大小比较【学习目标】1.通过由正方形面积求边长,让学生经历的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.【学习重点和难点】1.学习重点:感受无理数。
2.学习难点:感受无理数。
【学习过程】一、自主探究1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是_______,即=_____;(2)因为(____)2=,所以的算术平方根是_______,即=_____;(3)因为_____2=0.81,所以0.81的算术平方根是_______,即=_____;(4)因为_____222的算术平方根是_______,即=_____.3.这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?这个正方形的面积等于1,它的边长等于多少?用算术平方根来说这个正方形边长和面积的关系?〔指准图〕这个正方形的边长等于面积1的算术平方根,也就是边长=,等于多少?〔看以以下列图〕这个正方形的面积等于2,它的边长等于什么?因为边长等于面积的算术平方根,所以边长等于〔板书:边长=〕.〔上面三个图的位置如下所示〕=2,=1,那么等于多少呢?求等于多少,怎么求?在1和2之间的数有很多,到底哪个数等于呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于的那个数,它的平方等于多少?第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线索,我们来找等于的那个数.2=〕1.3的平方等于多少?〔师生共同用计算器计算〕1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?〔师生共同用计算器计算〕2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数〔板书:无限〕. 是无限小数,又是不循环小数,所以是一个无限不循环小数.除了,还有别的无限不循环小数吗?无限不循环小数还有很多很多,、、、都是无限不循环小数〔板书:、、、都是无限不循环小数〕.那怎么求、、、这些无限不循环小数的值呢?我们可以利用计算器来求.二、边学边练1、用计算器求以下各式的值:(1)〔精确到0.001〕; (2).〔按键时,教师要领着学生做;解题格式要与课本上的相同〕2、填空:(1)面积为9的正方形,边长==;(2)面积为7的正方形,边长=≈〔利用计算器求值,精确到0.001〕.3、用计算器求值:(1)=;(2)=;(3)≈〔精确到0.01〕.4、选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出以下各式的值:=,=,=,= .三、我的感悟这节课我的最大收获是:我不能解决的问题是:四、课后反思第12章乘法公式与因式分解12.1 平方差公式一、导入激学灰太狼开了租地公司,一天他把一边为a米的正方形土地租给慢羊羊种植。