初中数学七年级下册用计算器求算术平方根及其大小比较
- 格式:doc
- 大小:1011.80 KB
- 文档页数:3
数学七年级下学期《用计算器求算术平方根及其大小比较》教学设计一. 教材分析《用计算器求算术平方根及其大小比较》这一节内容,主要让学生掌握如何使用计算器求解算术平方根,以及如何比较不同数的大小。
教材通过具体的例子,引导学生了解算术平方根的概念,以及计算器在求解过程中的应用。
本节内容是学生在七年级数学学习过程中的重要组成部分,也是学生数学思维能力的一次提升。
二. 学情分析学生在进入七年级下学期时,已经具备了一定的数学基础,对数学知识有一定的理解。
但计算器的使用在数学课堂中还属于新生事物,学生可能对其存在好奇心和陌生感。
因此,在教学过程中,教师需要关注学生的学习兴趣,引导学生正确使用计算器,提高他们的数学解题能力。
三. 教学目标1.知识与技能目标:让学生掌握用计算器求算术平方根的方法,能熟练使用计算器进行计算。
2.过程与方法目标:通过小组合作,培养学生运用计算器解决数学问题的能力。
3.情感态度与价值观目标:激发学生对数学学习的兴趣,培养他们善于动脑、动手的能力。
四. 教学重难点1.重点:用计算器求算术平方根的方法。
2.难点:如何比较不同数的算术平方根的大小。
五. 教学方法1.情境教学法:通过设置具体的问题情境,引导学生运用计算器求解。
2.小组合作学习:让学生在小组内互相交流、讨论,共同解决问题。
3.实例教学法:通过具体的例子,讲解算术平方根的概念及求解方法。
六. 教学准备1.准备计算器,确保每名学生都有机会使用。
2.准备相关的数学题目,用于练习和巩固。
3.准备PPT或黑板,用于展示解题过程。
七. 教学过程1.导入(5分钟)教师通过一个简单的数学问题,引入本节内容。
例如:“请问5的平方根是多少?”然后引导学生思考:“我们如何用计算器快速求解这个问题?”2.呈现(10分钟)教师通过PPT或黑板,展示算术平方根的定义,以及如何使用计算器求解。
同时,解释算术平方根的概念,以及计算器在求解过程中的应用。
3.操练(10分钟)教师发放练习题,学生独立或小组合作,使用计算器求解。
第2课时用计算器求算术平方根及其大小比较【学习目标】1.通过由正方形面积求边长,让学生经历的估值过程,加深对算术平方根概念的理解,感受无理数,初步了解无限不循环小数的特点.2.会用计算器求算术平方根.【学习重点和难点】1.学习重点:感受无理数。
2.学习难点:感受无理数。
【学习过程】一、自主探究1.填空:如果一个正数的平方等于a,那么这个正数叫做a的_______________,记作_______.2.填空:(1)因为_____2=36,所以36的算术平方根是_______,即=_____;(2)因为(____)2=,所以的算术平方根是_______,即=_____;(3)因为_____2=0.81,所以0.81的算术平方根是_______,即=_____;(4)因为_____222的算术平方根是_______,即=_____.3.这个正方形的面积等于4,它的边长等于多少?谁会用算术平方根来说这个正方形边长和面积的关系?这个正方形的面积等于1,它的边长等于多少?用算术平方根来说这个正方形边长和面积的关系?〔指准图〕这个正方形的边长等于面积1的算术平方根,也就是边长=,等于多少?〔看以以下列图〕这个正方形的面积等于2,它的边长等于什么?因为边长等于面积的算术平方根,所以边长等于〔板书:边长=〕.〔上面三个图的位置如下所示〕=2,=1,那么等于多少呢?求等于多少,怎么求?在1和2之间的数有很多,到底哪个数等于呢?我们怎么才能找到这个数呢?我们可以这样来考虑问题,等于的那个数,它的平方等于多少?第一条线索是那个数在1和2之间,第二条线索是那个数的平方恰好等于2.根据这两条线索,我们来找等于的那个数.2=〕1.3的平方等于多少?〔师生共同用计算器计算〕1.69不到2,说明1.3比我们要找的那个数小.1.3小了,那我们找1.5,1.5的平方等于多少?〔师生共同用计算器计算〕2.25超过2,说明1.5比我们要找的那个数大.找1.3小了,找1.5又大了,下面怎么找呢?大家用计算器,算一算,找一找,哪个数的平方恰好等于2?等于1.41421356点点点,可见是一个小数,这个小数与我们以前学过的小数相比有点不同,有什么不同呢?第一,这个小数是无限小数〔板书:无限〕. 是无限小数,又是不循环小数,所以是一个无限不循环小数.除了,还有别的无限不循环小数吗?无限不循环小数还有很多很多,、、、都是无限不循环小数〔板书:、、、都是无限不循环小数〕.那怎么求、、、这些无限不循环小数的值呢?我们可以利用计算器来求.二、边学边练1、用计算器求以下各式的值:(1)〔精确到0.001〕; (2).〔按键时,教师要领着学生做;解题格式要与课本上的相同〕2、填空:(1)面积为9的正方形,边长==;(2)面积为7的正方形,边长=≈〔利用计算器求值,精确到0.001〕.3、用计算器求值:(1)=;(2)=;(3)≈〔精确到0.01〕.4、选做题:(1)用计算器计算,并将计算结果填入下表:(2)观察上表,你发现规律了吗?根据你发现的规律,不用计算器,直接写出以下各式的值:=,=,=,= .三、我的感悟这节课我的最大收获是:我不能解决的问题是:四、课后反思第12章乘法公式与因式分解12.1 平方差公式一、导入激学灰太狼开了租地公司,一天他把一边为a米的正方形土地租给慢羊羊种植。
6.1平方根第2课时用计算器求算术平方根及其大小比较一、选择题1.利用教材中的计算器依次按键如下:ON/C8=则计算器显示的结果与下列各数中最接近的一个是( )A.2.5 B.2.6 C.2.8 D.2.92.估计21的大小在( )A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.与2+15最接近的整数是( )A.4 B.5 C.6 D.74.制作一个表面积为30 cm2的正方体纸盒,则这个正方体纸盒的棱长是( )A. 6 cmB. 5 cmC.30 cm D.± 5 cm5.已知a,b是两个连续整数,a<7-1<b,则a,b分别是( )A.0,1 B.1,2 C.2,3 D.3,46.一个正奇数的算术平方根是a,那么与这个正奇数相邻的下一个正奇数的算术平方根是( ) A.a+2 B.a2+2C.a2+2 D.±a+27.已知m=2×8+5,则( )A.4<m<5 B.5<m<6C.6<m<7 D.7<m<88.已知5-x+|3x-y|=0,则x+y的整数部分是( )A.3 B.4 C.5 D.6二、填空题9.利用计算器计算:2(3-1)+3≈(精确到0.01).10.比较大小:11.若a<7-2<b,且a,b是两个连续整数,则a+b的值是.三、解答题12.通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5.13.某地气象资料表明,当地雷雨持续的时间t(h)可以用公式t2=d3900估计,其中d(km)是雷雨区域的直径.如果雷雨区域的直径为9 km,那么这场雷雨大约能持续多长时间?14.“欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h,观测者视线能达到的最远距离为d,则d2≈2hR,其中R是地球半径(通常取6400 km).小丽站在海边一块岩石上,眼睛离海平面的高度h为20 m,她观测到远处一艘船刚露出海平面,求此时d的值.15.芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm,宽为2 dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号);(2)芳芳能否在长方形纸板上沿边截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板?判断并说明理由(提示:2≈1.414,3≈1.732).16.阅读理解:∵4<5<9,即2<5<3,∴1<5-1<2.∴5-1的整数部分为1.∴5-1的小数部分为(5-1)-1=5-2.解决问题:已知a是19-3的整数部分,b是26-2的小数部分,求(-a)3+(b+5)2的算术平方根.参考答案一、选择题1.利用教材中的计算器依次按键如下:ON/C8=则计算器显示的结果与下列各数中最接近的一个是( C)A.2.5 B.2.6 C.2.8 D.2.92.估计21的大小在( C)A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.与2+15最接近的整数是( C)A.4 B.5 C.6 D.74.制作一个表面积为30 cm2的正方体纸盒,则这个正方体纸盒的棱长是( B)A. 6 cmB. 5 cmC.30 cm D.± 5 cm5.已知a,b是两个连续整数,a<7-1<b,则a,b分别是( B)A.0,1 B.1,2 C.2,3 D.3,46.一个正奇数的算术平方根是a,那么与这个正奇数相邻的下一个正奇数的算术平方根是( C) A.a+2 B.a2+2C.a2+2 D.±a+27.已知m=2×8+5,则( C)A.4<m<5 B.5<m<6C.6<m<7 D.7<m<88.已知5-x+|3x-y|=0,则x+y的整数部分是( B)A.3 B.4 C.5 D.6二、填空题9.利用计算器计算:2(3-1)+3≈(精确到0.01).【答案】4.4610.比较大小:【答案】< <11.若a<7-2<b,且a,b是两个连续整数,则a+b的值是.【答案】1三、解答题12.通过估算比较下列各组数的大小:(1)5与1.9;(2)6+12与1.5.解:∵5>4,解:∵6>4,∴5>4,即5>2. ∴6>4,即6>2,∴5>1.9. ∴6+12>2+12,即6+12>1.5.13.某地气象资料表明,当地雷雨持续的时间t(h)可以用公式t2=d3900估计,其中d(km)是雷雨区域的直径.如果雷雨区域的直径为9 km,那么这场雷雨大约能持续多长时间?解:∵t2=d3900,∴t=d3900.将d=9代入得t=93900=81100=0.9(h).答:这场雷雨大约能持续0.9 h.14.“欲穷千里目,更上一层楼”说的是登得高看得远.如图,若观测点的高度为h,观测者视线能达到的最远距离为d,则d2≈2hR,其中R是地球半径(通常取6400 km).小丽站在海边一块岩石上,眼睛离海平面的高度h为20 m,她观测到远处一艘船刚露出海平面,求此时d的值.解:由题意,得h=20 m=0.02 km,R=6400 km,∴d2≈2×0.02×6400.解得d≈16 km.即此时d的值约为16 km.15.芳芳同学手中有一块长方形纸板和一块正方形纸板,其中长方形纸板的长为3 dm,宽为2 dm,且两块纸板的面积相等.(1)求正方形纸板的边长(结果保留根号);解:由题意得S正方形=S长方形=3×2=6(dm2),所以正方形纸板的边长为 6 dm.(2)芳芳能否在长方形纸板上沿边截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板?判断并说明理由(提示:2≈1.414,3≈1.732).解:不能.理由如下:因为两个正方形纸板的边长的和为2+3≈3.1(dm),3.1>3,所以不能在长方形纸板上沿边截出两个完整的,且面积分别为2 dm2和3 dm2的正方形纸板.16.阅读理解:∵4<5<9,即2<5<3,∴1<5-1<2.∴5-1的整数部分为1.∴5-1的小数部分为(5-1)-1=5-2.解决问题:已知a是19-3的整数部分,b是26-2的小数部分,求(-a)3+(b+5)2的算术平方根.解:∵16<19<25,∴4<19<5.∴1<19-3<2.∴a=1.∵25<26<36,∴5<26<6. ∴3<26-2<4.∴b=26-5.∴(-a)3+(b+5)2=-1+26=25,则所求的算术平方根是5.。
第2课时 用计算器求算术平方根及其大小比较一、选择题) A.15 B.±15 C.-15 D.252.用计算器求489.3结果为(保留四个有效数字)( ) A.12.17B.±1.868C.1.868D.-1.8683.将2,33,55用不等号连接起来为( ) A. 2<33<55 B. 55< 33< 2 C. 33<2<55D. 55< 2< 334.下列各组数,能作为三角形三条边的是( ) A.23.0,37.0,54.1 B.34.11,16.20,36.97 C.101,352,800D.48.4,4.70,1.945.一个正方形的草坪,面积为658平方米,问这个草坪的周长是( ) A.6.42 B.2.565 C.25.65 D.102.6 二、填空题6.求53.568的按键顺序为__________.7.(7.14132.25+)÷31.65=______.8.0.0288的平方根为______.9.计算3317331⨯(保留四个有效数字)=______. 10.填“<”“>”或“=”号(1)14 ____356 (2)3100 ____21 (3)-2.0 ____307.0- (4)-26 ____3128-三、解答题11.用计算器求下列各式的值(结果保留四个有效数字)(1)-3247.39 (2)483.41 (3)4.12 (4)37180012.用计算器求下列各式中的x 的近似值(结果精确到0.01)(1)3x 2-142=29(2)2(x +5)2=1713.当人造地球卫星的运行速度大于第一宇宙速度而小于第二宇宙速度时,它能环绕地球运行,已知第一宇宙速度的公式是v 1=gR (米/秒),第二宇宙速度的公式是v 2=gR 2 (米/秒),其中g =9.8米/秒,R =6.4×106米.试求第一、第二宇宙速度(结果保留两个有效数字).14.已知某圆柱体的体积V =61πd 3(d 为圆柱的底面直径) (1)用V 表示d .(2)当V =110 cm 3时,求d 的值.(结果保留两个有效数字)15.用计算求下列各数的算术平方根(保留四个有效数字),并观察这些数的算术平方根有什么规律.(1)78000,780,7.8,0.078,0.00078. (2)0.00065,0.065,6.5,650,65000. 答案:一、1.A 2.C 3.D 4.D 5.D二、6.略 7.2.10 8.±0.1697 9.1.865 10.(1)< (2)> (3)< (4)<三、11.略 12略 13.7.9×103米/秒 1.1×104米/秒14.(1)36V(2)6.015.被开方数的小数点向左(右)移动两位,则其平方根的小数点就向左(右)移动一位高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________ 一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )第1 题图 第2题图 第3题图 2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )◆类型二 简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。
第六章 实数6.1.2用计算器求算术平方根及大小比较 学习目标:一、知识与技能1.会用计算器求一个数的算术平方根.2.理解被开方数扩大(或缩小)与它的算术平方根扩大(或缩小)的规律.3.能用夹值法求一个数的算术平方根的近似值.二、过程与方法:通过求一个数的算术平方根的近似值,初步了解数的无限不循环性,理解用近似值表示无限不循环小数的实际意义.三、情感态度价值观:通过计算近似值,比较两个算术平方根的大小,培养学生的细心探求精神.教学重点难点:重点:用计算器求算术平方根.难点:算术平方根的估算及大小比较.教学准备:【教师准备】 教材图6.1-1的投影图片.【学生准备】1.复习算术平方根的相关知识.2.计算器.【教学过程】:一、复习提问、出示目标一、知识链接1.什么是算术平方根?2.判断下列各数有没有算术平方根?如果有,请求出它们的算术平方根. -36,0.09 ,,0,2,.新课导入:导入一:25121()23-能否用两个面积为1 dm2的小正方形拼成一个面积为2 dm2的大正方形?如图所示,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2 dm2的大正方形.你知道这个大正方形的边长是多少吗? 设大正方形的边长为x dm,则x2=2,由算术平方根的意义可知x=√2.所以大正方形的边长是√2 dm.问题:√2到底有多大呢?导入二:3.1415926…,看到这个数字大家一定会想到圆周率吧.圆的周长和直径的比是一个无限不循环小数,除此之外,像√2,√5等是不是无限不循环小数呢?构建新知:1.探索√2的大小.师:因为12=1,22=4,所以1<√2<2.这里我们只是粗略地知道了√2的大小,还不是很精确,这就需要我们继续探索下去.怎么继续下去呢?大家想个办法吧.生:取一个大于1且小于2的数试一试.师:从1.1到1.9这些数字我们怎么选呢?生:通过估算和计算,我们发现1.42=1.96,1.52=2.25,所以1.4<√2<1.5.师:用刚才的办法还能继续探索下去吗?生:因为1.412=1.9881,1.422=2.0164,所以1.41<√2<1.42;因为1.4142=1.999396,1.4152=2.002225,所以1.414<√2<1.415……师:我们可以如此进行下去,会得到√2的更精确的近似值.但我们无论进行多少次探索,都不会有一个最终的数值,可见√2=1.41421356237…,它是一个无限不。
第2课时用计算器求算术平方根及其大小比较
教学目标
1.会比较两个数的算术平方根的大小;(重点)
2.会估算一个数的算术平方根的大致范围,掌握估算的方法,形成估算的意识;(难点)
3.会用计算器求一个数的算术平方根.
教学过程
一、情境导入
请大家四个人为一组,拿出自己准备好的两个边长为1的正方形纸片和剪刀,按虚线剪开拼成一个大的正方形.
因为两个小正方形面积之和等于大正方形的面积,所以根据正方形面积公式可知a2=2,那么a是多少?这个数是多大呢?
二、合作探究
探究点一:算术平方根的估算
【类型一】估算算术平方根的大致范围
估算19-2的值( )
A.在1和2之间 B.在2和3之间
C.在3和4之间 D.在4和5之间
解析:因为42<19<52,所以4<19<5,所以2<19-2<3.故选B.
方法总结:本题利用被开方数两边比较接近的完全平方数的算术平方根估计这个数的算术平方根的大小.
【类型二】确定算术平方根的整数部分与小数部分
已知a是8的整数部分,b是8的小数部分,求(-a)3+(b+2)2的值.
解析:本题综合考查有理数与无理数的关系.因为2<8<3,所以8的整数部分是2,即a=2.8是无限不循环小数,它的小数部分应是8-2,即b=8-2,再将a,b代入代数式求值.
解:因为2<8<3,a是8的整数部分,所以a=2.因为b是8的小数部分,所以b=8-2.所以(-a)3+(b+2)2=(-2)3+(8-2+2)2=-8+8=0.
方法总结:解此题的关键是确定8的整数部分和小数部分(用这个无理数减去它的整数部分即为小数部分).
【类型三】用估算法比较数的大小
通过估算比较下列各组数的大小:
(1)5与1.9; (2)6+1
2
与1.5.
解析:(1)估算5的大小,或求1.9的平方,比较5与1.92的大小;(2)先
估算6的大小,再比较6与2的大小,从而进一步比较6+1
2
与1.5的大小.
解:(1)因为5>4,所以5>4,即5>2,所以5>1.9;
(2)因为6>4,所以6>4,所以6>2,所以6+1
2
>
2+1
2
=1.5,即
6+1
2
>1.5.
方法总结:比较两数的大小常用方法有:①作差比较法;②求值比较法;③移因式于根号内,再比较大小;④利用平方法比较无理数的大小等.比较无理数与有理数的大小时要先估算无理数的近似值,再比较它与有理数的大小.探究点二:用计算器求算术平方根
用计算器计算:
(1)1225;(2)36.42(精确到0.001);(3)13(精确到0.001).
解析:(1)按键:“”“1225”“=”即可;(2)按键:“”“36.42”“=”,再取近似值即可;(3)按键:“”“13”“=”,再取近似值即可.解:(1)1225=35;(2)36.42≈6.035;(3)13≈3.606.
方法总结:取近似值时要看精确到的位数的下一位,再四舍五入.
探究点三:算术平方根的实际应用
全球气候变暖导致一些冰川融化并消失,在冰川消失12年后,一种低
等植物苔藓开始在岩石上生长.每个苔藓都会长成近似圆形,苔藓的直径和冰川消失的时间近似地满足如下关系式:d=7×t-12(t≥12).其中d代表苔藓的直径,单位是厘米;t代表冰川消失的时间,单位是年.
(1)计算冰川消失16年后苔藓的直径;
(2)如果测得一些苔藓的直径是35厘米,则冰川约是在多少年前消失的?
解析:(1)根据题意可知是求当t=16时d的值,直接把对应数值代入关系式即可求解;(2)根据题意可知是求当d=35时t的值,直接把对应数值代入关系式即可求解.
解:(1)当t=16时,d=7×16-12=7×2=14(厘米).
答:冰川消失16年后苔藓的直径是14厘米;
(2)当d=35时,t-12=5,即t-12=25,解得t=37(年).
答:冰川约是在37年前消失的.
方法总结:本题考查算术平方根的实际应用,注意实际问题中涉及开平方通常取算术平方根.
三、板书设计
1.估算错误!)
2.用计算器求一个正数的算术平方根
教学反思
在解决问题的同时引导学生对解决方法进行总结,和学生一起归纳出估算的方法.让学生从被动学习到主动探究,激发学生的学习热情,培养学生自主学习数学的能力.通过独立思考与小组讨论相结合的方式解决新的实际问题,让学生初步体会数学知识的实际应用价值。