[数学]算法概念
- 格式:ppt
- 大小:304.50 KB
- 文档页数:34
算法基本知识点总结一、算法的基本概念1. 算法的定义算法是用来解决特定问题的有限步骤的有序集合。
算法是一种计算方法,可以描述为一系列清晰的步骤,用来解决特定问题或执行特定任务。
2. 算法的特性(1)有穷性:算法必须在有限的步骤内结束。
(2)确定性:对于相同输入,算法应该产生相同的输出。
(3)可行性:算法必须可行,即算法中的每一步都可以通过已知的计算机能力来执行。
3. 算法的设计目标(1)正确性:算法应该能够解决给定的问题。
(2)可读性:算法应该易于理解和解释。
(3)高效性:算法应该能在合理的时间内完成任务。
二、算法的复杂度分析1. 时间复杂度算法的时间复杂度表示算法执行所需的时间长度,通常用“大O记法”表示。
时间复杂度反映了算法的运行时间与输入规模之间的关系。
常见的时间复杂度包括:(1)O(1):常数时间复杂度,表示算法的运行时间与输入规模无关。
(2)O(logn):对数时间复杂度,表示算法的运行时间与输入规模的对数成正比。
(3)O(n):线性时间复杂度,表示算法的运行时间与输入规模成正比。
(4)O(nlogn):线性对数时间复杂度,表示算法的运行时间与输入规模和对数成正比。
(5)O(n^2):平方时间复杂度,表示算法的运行时间与输入规模的平方成正比。
(6)O(2^n):指数时间复杂度,表示算法的运行时间与输入规模的指数成正比。
2. 空间复杂度算法的空间复杂度表示算法执行所需的内存空间大小。
常见的空间复杂度包括:(1)O(1):常数空间复杂度,表示算法的内存空间与输入规模无关。
(2)O(n):线性空间复杂度,表示算法的内存空间与输入规模成正比。
三、常见的算法设计思想1. 贪心算法贪心算法是一种选取当前最优解来解决问题的算法。
贪心算法的核心思想是从问题的某一初始解出发,通过一系列的局部最优选择,找到全局最优解。
2. 动态规划动态规划是一种将原问题分解成子问题来求解的方法。
动态规划通常适用于具有重叠子问题和最优子结构性质的问题。
什么是算法?算法是一种用于解决问题或执行特定任务的有序步骤的描述。
它是计算机科学和数学领域中的一个重要概念。
算法提供了一种精确而清晰的方法来描述如何执行计算和处理数据。
它可以被看作是一种计算过程的抽象表示,用于解决各种问题,从简单的数学运算到复杂的数据处理和优化。
算法由一系列的步骤或操作组成,每个步骤都定义了如何执行特定的计算或操作。
这些步骤按照特定的顺序执行,以解决给定的问题或实现特定的目标。
算法可以接受输入,执行一系列操作,并生成输出。
它应该是可行的、确定性的和有限的。
算法的设计和分析是计算机科学的核心内容之一。
好的算法应该具有正确性、效率和可读性。
正确性是指算法能够按照预期的方式解决问题。
效率是指算法在给定的时间和空间限制下能够高效地执行。
可读性是指算法应该易于理解和实现。
算法可以用自然语言、伪代码或特定的编程语言来描述。
自然语言的描述通常用来解释算法的思想和执行过程。
伪代码是一种类似于编程语言的描述语言,它提供了一种中间层次的抽象,介于自然语言和具体编程语言之间。
特定的编程语言可以用来实现和执行算法。
算法的性能可以通过时间复杂度和空间复杂度来评估。
时间复杂度是指算法执行所需的时间量级,通常用大O符号表示。
空间复杂度是指算法执行所需的额外空间的量级。
通过分析算法的复杂度,可以评估其效率,并作出适当的选择和优化。
算法的应用非常广泛,涵盖了各个领域。
在计算机科学中,算法在数据结构、图论、排序、搜索、动态规划、机器学习等方面起着重要作用。
在实际应用中,算法被用于解决诸如路径规划、图像处理、网络优化、自然语言处理、数据分析等各种问题。
算法的发展是一个不断演化的过程。
随着技术的进步和需求的变化,新的算法不断涌现,旧的算法也在不断改进和优化。
算法的研究和创新是计算机科学的重要方向之一,它有助于提高计算效率、解决复杂问题、优化资源利用等。
总而言之,算法是一种用于解决问题或执行特定任务的有序步骤的描述。
它提供了一种精确而清晰的方法来描述计算和处理数据。
简述算法概念一、算法概念算法是指用于解决问题的一系列步骤,它可以被看作是一种计算模型。
在计算机科学中,算法是指用于解决特定问题的一组有限指令序列。
这些指令描述了一个计算过程,当按照给定的顺序执行时,能够在有限时间内产生输出结果。
二、算法的分类1. 按照求解问题的性质分类(1) 数值型问题:求解数学方程、求解数值积分等。
(2) 组合型问题:如图论、网络流等。
(3) 几何型问题:求解几何图形之间关系等。
2. 按照设计思路分类(1) 贪心算法:每次选择最优策略,希望最终得到全局最优解。
(2) 分治算法:将原问题分成若干个规模较小且结构与原问题相似的子问题,递归地求解这些子问题,再将结果合并成原问题的解。
(3) 动态规划算法:将大规模复杂的问题分割成若干个小规模简单的子问题进行求解,并保存每个子问题的答案,在需要时查找已经保存好的答案来避免重复计算。
3. 按照求解策略分类(1) 穷举算法:列举所有可能的情况,再从中选出最优解。
(2) 迭代算法:通过不断迭代逼近最优解。
(3) 随机化算法:通过随机选择策略来求解问题。
三、算法的评价标准1. 正确性:算法所得结果应该与问题的实际结果一致。
2. 时间复杂度:衡量算法执行所需时间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
3. 空间复杂度:衡量算法执行所需空间的指标,通常使用大O记号表示,例如O(n)、O(nlogn)等。
4. 可读性:算法应该易于理解和修改,使得程序员能够快速地进行开发和维护工作。
四、常见数据结构与算法1. 数组与链表数组是一种线性数据结构,它可以存储相同类型的元素,并且可以通过下标访问。
链表也是一种线性数据结构,它由节点组成,每个节点包含一个数据元素和一个指向下一个节点的指针。
数组和链表都可以用来实现栈和队列等数据结构。
2. 排序算法排序是计算机科学中最基本的问题之一,它的目的是将一组数据按照某种规则进行排列。
常见的排序算法包括冒泡排序、插入排序、选择排序、快速排序、归并排序等。
高中数学算法初步知识点整理高中数学算法初步知识点:考点(必考)概要1、算法的概念:①由基本运算及规定的运算顺序所构成的完整的解题步骤,或者是按照要求设计好的有限的计算序列,并且这样的步骤或序列能解决一类问题。
②算法的五个重要特征:ⅰ有穷性:一个算法必须保证执行有限步后结束;ⅱ确切性:算法的每一步必须有确切的定义;ⅲ可行性:算法原则上能够精确地运行,而且人们用笔和纸做有限次即可完成;ⅳ输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。
所谓0个输入是指算法本身定出了初始条件。
ⅴ输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。
没有输出的算法是毫无意义的。
2、程序框图也叫流程图,是人们将思考的过程和的顺序进行分析、整理,用规定的文字、符号、图形的组合加以直观描述的方法(1)程序框图的基本符号:(2)画流程图的基本规则:①使用标准的框图符号②从上倒下、从左到右③开始符号只有一个退出点,结束符号只有一个进入点,判断符号允许有多个退出点④判断可以是两分支结构,也可以是多分支结构⑤语言简练⑥循环框可以被替代3、三种基本的逻辑结构:顺序结构、条件结构和循环结构(1)顺序结构:顺序结构描述的是是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的。
(2)条件结构:分支结构的一般形式两种结构的共性:①一个入口,一个出口。
特别注意:一个判断框可以有两个出口,但一个条件分支结构只有一个出口。
②结构中每个部分都有可能被执行,即对每一个框都有从入口进、出口出的路径。
以上两点是用来检查流程图是否合理的基本方法(当然,学习循环结构后,循环结构也有此特点)(3)循环结构的一般形式:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。
循环结构又称重复结构,循环结构可细分为两类:①如左下图所示,它的功能是当给定的条件成立时,执行A框,框执行完毕后,再判断条件是否成立,如果仍然成立,再执行A框,如此反复执行框,直到某一次条件不成立为止,此时不再执行A框,从b离开循环结构。
数学必修三算法的概念的知识点数学不是教出来的,是悟出来的,是自学出来的。
数学不是看会的,是算会的。
学数学最重要的就是解题能力,同时上课要认真听讲、课后做匹配练习,学会以不变应万变。
下面是小编整理的数学必修三算法的概念的知识点,仅供参考希望能够帮助到大家。
数学必修三算法的概念的知识点1.1.1 算法的概念1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2. 算法的特点:(1)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。
输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。
处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。
判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;不成立时明“否”或“N”。
算法名词解释算法(Algorithm)是指解决问题的一种方法。
这些方法一般都有严格的逻辑结构,如由哪几个过程组成、每个过程执行的先后次序、哪几个变量将被操作、何时对何种对象停止执行等,这些问题都是明确的,解题人只需按照规则运行程序,直到结束。
这样,经过有限步骤的穷尽性搜索之后,就能得到问题的答案。
算法不仅是解决某一类问题的一般方法,而且也常常用于解决其他问题;从形式上看,算法既不同于计算机科学中的数值分析,也不同于计算机工程与应用中的软件工程,而属于数学中的一个分支,即形式化方法的范畴。
根据处理问题的数据集的特征来选择所用的算法,并不需要知道为什么要这样做,这正是算法本身的力量之处。
算法具有下列特点:(1)算法不仅是解决某一类问题的一般方法,而且也常常用于解决其他问题;从形式上看,算法既不同于计算机科学中的数值分析,也不同于计算机工程与应用中的软件工程,而属于数学中的一个分支,即形式化方法的范畴。
(2)一个算法是否可行,不在于它本身是否完美,而在于从现实的角度看,它能否被实施,在现实条件下能否达到预期目标。
算法的价值不在于穷举而终于问题解决,关键在于从问题本身是否能够演绎出一个算法,在很多情况下,没有穷举问题也可能提供全新的、更好的算法。
算法通常可以表示为:目标(objective),约束条件(constraint),规则(rule),算法(algorithm)。
1.目标2.约束条件3.规则4.算法算法描述了从问题空间到数值空间进行搜索的算法,包括算法的逻辑实现、算法的正确性证明。
算法设计包括确定目标、选择搜索算子、确定搜索方式和制定求解策略等内容。
算法的评价分为:有效性、效率和复杂性。
算法分析包括算法的描述、算法的时间和空间效率分析、设计原理及评价、性能分析等。
一个算法的有效性用算法的时间和空间效率来衡量。
设计原理主要分析算法是怎样编码的,确保数据输入、输出及数据的合法性,算法执行时所需要的各种资源(例如算法所需的时间、空间和存储器),算法的复杂性,以及是否有冗余。