材料力学第12章 压杆稳定
- 格式:ppt
- 大小:844.00 KB
- 文档页数:20
15-1 两端为球铰的压杆,当它的横截面为图示各种不同形状时,试问杆件会在哪个平面内失去稳定(即在失稳时,杆的截面绕哪一根轴转动)?解:(a),(b),(e)任意方向转动,(c),(d),(f)绕图示Z 轴转动。
15-2 图示各圆截面压杆,横截面积及材料都相同,直径d =1.6cm ,杆材A 3钢的弹性模量E =200MPa ,各杆长度及支承形式如图示,试求其中最大的与最小的临界力之值。
解:(a) 柔度: 2301500.4λ⨯== 相当长度:20.30.6l m μ=⨯=(b) 柔度: 1501250.4λ⨯== 相当长度:10.50.5l m μ=⨯=(c) 柔度: 0.770122.50.4λ⨯== 相当长度:0.70.70.49l m μ=⨯=(d) 柔度: 0.590112.50.4λ⨯== 相当长度:0.50.90.45l m μ=⨯=(e) 柔度: 145112.50.4λ⨯== 相当长度:10.450.45l m μ=⨯=由E=200Gpa 及各柔度值看出:各压杆的临界力可用欧拉公式计算。
即:()22cr EIF l πμ=各压杆的EJ 均相同,故相当长度最大的压杆(a)临界力最小,压杆(d)与(e)的临界力最大,分别为:()2948222320010 1.610640.617.6410cr EFF l N πππμ-⨯⨯⨯⨯⨯===⨯()2948222320010 1.610640.4531.3010cr EIF l Nπππμ-⨯⨯⨯⨯⨯===⨯15-3 某种钢材P σ=230MPa ,s σ=274MPa ,E =200GPa ,直线公式λσ22.1338-=cr ,试计算该材料压杆的P λ及S λ值,并绘制1500≤≤λ范围内的临界应力总图。
解:92.633827452.5p s s a λπσλ===--===15-4 6120型柴油机挺杆为45钢制成的空心圆截面杆,其外径和内径分别为,12mm 和10mm ,杆长为383mm ,两端为铰支座,材料的E =210GPa ,P σ=288MPa ,试求此挺杆的临界力cr F 。
浙江大学材料力学实验报告(实验项目:压杆稳定)一、实验目的:1、观察压杆的失稳现象;2、测定两端铰支压杆的临界压力;3、观察改变支座约束对压杆临界压力的影响。
二、设备及装置:1. 带有力传感和显示器的简易加载装置或万能电子试验机;2. 数字应变仪;3. 大量程百分表及支架;4. 游标卡尺及卷尺;5. 试样,压杆试样为由弹簧钢制成的细长杆,截面为矩形,两端加工成带有小圆弧的刀刃。
在试样中点的左右两端各贴仪枚应变片。
6. 支座,支座为浅V 性压杆变形时两端可绕Z 轴转动,故可作为铰支架。
三、实验原理和方法:1、理论计算:理想压杆,当压力P 小于临界压力cr P 时,压杆的直线平衡是稳定的。
这时压力P 与中点挠度δ的关系相当于右图中的直线OA 。
当压力到达临界压力cr P 时,压杆的直线平衡变为不稳定,它可能转为曲线平衡。
按照小挠度理论,P 与δ的关系相当于图中水平线AB 。
两端铰支细长杆的临界压力由欧拉公式计算 2cr 2P EIl π=,其中I 为横截面对z 轴的惯性矩。
2、实测时:实际压杆难免有初弯曲,材料不均匀和压力偏心等缺陷,由于这些缺陷,在P 远小于cr P 时,压杆已经出现弯曲。
开始,δ很不明显,且增长缓慢,如图中的OCD 段。
随着P 逐步接近cr P ,δ将急剧增大。
只有弹性很好的细长杆才可以承受大挠度,压力才可能略微超过cr P ,实测时,在压杆两侧各贴一应变片,测定P-ε曲线,对前后应变ε取增量ε∆,当ε∆大于上一个的ε∆的2倍时即认为此时的压力为临界压力。
3、加载分两个阶段,在理论值cr P 的70%~80%之前,可采取大等级加载,载荷超过cr P 的80%以后,载荷增量应取得小些。
在整个实验过程中,加载要保持均匀、平稳、缓慢。
四、实验结果1、理论计算参数记录:b=30.00mm, h=3.50mm, k=2.13, L=525mm, E=210GPa31041.07191012bh I m -==⨯,则由欧拉公式得 2cr 2P 805.2EI N lπ== 2、实测临界压力:实验数据记录如下:压力-800N 时,应变增量192,超过了-780N 时的应变增量90的2倍,可得临界压力为-800N 。
直梁的弯曲及组合变形与压杆稳定——教案一、教学目标:1. 让学生了解直梁弯曲的基本概念,掌握梁弯曲的弹性理论。
2. 使学生理解组合变形及压杆稳定的基本原理,能够分析实际工程中的相关问题。
3. 培养学生的动手实践能力,通过实例分析提高学生解决工程问题的能力。
二、教学内容:1. 直梁弯曲的基本概念:直梁、弯曲、剪力、弯矩等。
2. 梁弯曲的弹性理论:弯曲应力、弯曲变形、弯曲强度计算等。
3. 组合变形:拉伸、压缩、弯曲、剪切等组合变形的分析方法。
4. 压杆稳定的基本原理:压杆稳定条件、压杆失稳现象、压杆稳定计算等。
5. 实例分析:分析实际工程中的直梁弯曲、组合变形与压杆稳定问题。
三、教学方法:1. 采用讲授与讨论相结合的方式,让学生掌握直梁弯曲及组合变形与压杆稳定的基本理论。
2. 通过案例分析,使学生能够将理论知识应用于实际工程问题。
3. 利用动画、图片等辅助教学手段,帮助学生形象地理解抽象的概念。
4. 安排课堂讨论,鼓励学生提问、发表观点,提高学生的参与度。
四、教学安排:1. 课时:本章共计12课时。
2. 教学方式:讲授、案例分析、课堂讨论。
3. 教学进程:第1-4课时:直梁弯曲的基本概念及弹性理论。
第5-8课时:组合变形及压杆稳定的基本原理。
第9-12课时:实例分析及练习。
五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,给予相应的表现评价。
2. 课后作业:布置相关练习题,检验学生对知识的掌握程度。
3. 课程报告:要求学生选择一个实际工程案例进行分析,报告应包括问题分析、计算过程和结论。
通过课程报告评价学生的实践能力。
4. 期末考试:设置有关直梁弯曲、组合变形与压杆稳定的题目,考察学生的综合运用能力。
六、教学资源:1. 教材:《材料力学》、《结构力学》等相关教材。
2. 辅助材料:PPT课件、动画、图片、案例资料等。
3. 实验设备:力学实验仪、弯曲实验装置、压杆实验装置等。
4. 网络资源:相关学术期刊、在线课程、论坛等。
材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
第三部分材料力学选择题第一章绪论1.构件的强度、刚度和稳定性_______。
A、只与材料的力学性质有关;B、只与构件的形状尺寸有关;C、与上述二者都有关;D、与上述二者都无关。
2.均匀性假设认为,材料内部各点的___________是相同的。
A、应力;B、应变;C、位移;D、力学性质。
3.根据小变形条件可以认为_______。
A、构件不变形;B、构件不破坏;C、构件仅发生弹性变形;D、构件的变形远小于其原始尺寸。
4.外力包括_______。
A、集中载荷和分布载荷;B、静载荷和动载荷;C、所有作用在物体外部的力;D、载荷和支反力。
5.在下列说法中,_______是正确的。
A、内力随外力的增大而增大;B、内力与外力无关;;C、内力的单位是N或kN ;D、内力沿杆轴是不变的。
6.静定杆件的内力与其所在截面的_______可能有关。
A、形状;B、大小;C、材料;D、位置。
7.在下列关于内力与应力的讨论中,说法_______ 是正确的。
A、内力是应力的代数和;B、内力是应力的矢量和;C、应力是内力的平均值;D、应力是内力的分布集度。
8.在杆件的某斜截面上,各点的正应力_______。
A、大小一定相等,方向一定平行;B、大小不一定相等,但方向—定平行;C、大小不一定相等,方向也不一定乎行;D、大小一定相等,但方向不—定平行。
9.在杆件的某一横截面上,各点的剪应力_______。
A、大小一定相等;B、方向一定平行;C、均作用在同—平面内;D、—定为零。
10.在一截面上的任意点处,正应力σ与剪应力τ的夹角a为_______。
A、90°;B、45°;C、0°;D、任意角。
11.应力的量纲是_______。
A、ML-1T-2;B、MLT-2;C、ML2T-2;D、ML3T-2。
12.在轴向拉压杆和受扭圆轴的横截面上分别产生 _______。
A、线位移、线位移;B、角位移、角位移;C、线位移、角位移;D、角位移、线位移。