材料力学10压杆的稳定性问题
- 格式:pptx
- 大小:439.29 KB
- 文档页数:16
材料力学之压杆稳定引言材料力学是研究物体内部受力和变形的学科,压杆稳定是其中的一个重要内容。
压杆稳定是指在受到压力作用时,压杆能够保持稳定,不发生失稳或破坏的现象。
本文将介绍压杆稳定的基本原理、稳定条件以及一些常见的失稳形式。
压杆的受力分析在进行压杆稳定分析前,我们首先需要对压杆受力进行分析。
压杆通常是一根长条形材料,两端固定或铰接。
在受到外部压力作用时,压杆会受到内部的压力,这些压力会导致杆件产生变形和应力。
在分析压杆稳定性时,我们主要关注压杆的弯曲和侧向稳定性。
压杆的基本原理压杆的稳定性是由杆件的弯曲和侧向刚度共同决定的。
当压杆弯曲和侧向刚度足够大时,压杆能够保持稳定。
所以,为了提高压杆的稳定性,我们可以采取以下几种措施:1.增加杆件的截面面积,增加抗弯能力;2.增加杆件的高度或长度,增加抗弯刚度;3.增加杆件的横向剛性,增加抗侧向位移能力;4.添加支撑或加固结构,增加整体稳定性。
压杆的稳定条件压杆稳定的基本条件是在承受外部压力时,内部应力不超过材料的极限强度。
当内部应力超过材料的极限强度时,压杆将会发生失稳或破坏。
在实际工程中,我们一般采用压杆的临界压力比来判断压杆的稳定性。
临界压力比是指杆件在失稳前的临界弯曲载荷与临界弯曲载荷之比。
当临界压力比大于1时,压杆是稳定的;当临界压力比小于1时,压杆是不稳定的。
临界压力比的计算可以采用欧拉公式或者Vlasov公式等方法。
这些方法能够给出压杆在不同边界条件下的临界压力比。
在工程实践中,我们可以根据具体问题选择合适的方法来计算临界压力比。
压杆的失稳形式压杆失稳通常有两种形式:弯曲失稳和侧向失稳。
弯曲失稳压杆的弯曲失稳是指杆件在受到外部压力作用时,发生弯曲变形并导致失稳。
在弯曲失稳中,压杆的弯曲形态可以分为四种:1.局部弯曲失稳:杆件出现弯曲局部失稳,形成凸起或凹陷;2.局部弯扭失稳:杆件出现弯曲和扭曲共同失稳;3.全截面失稳:整个杆件截面均发生失稳;4.全体失稳:整个杆件完全失稳并失去稳定性。
【陆工总结材料力学考试重点】之(第7章)压杆的稳定性问题1、压杆稳定性的特点?答:1)杆件两端受轴向压缩载荷作用;2)杆子比较细长;3)产生弯曲变形。
2、细长压杆的平衡状态?答:在F的作用下,压杆存在两种平衡状态:直线平衡状态,弯曲平衡状态。
F cr称为临界载荷,即使杆件恰好由直杆变为曲杆的压缩载荷。
压杆稳定性问题的关键就是求临界载荷F cr。
3、细长压杆的临界载荷——欧拉公式?答:细长压杆的临界载荷公式(欧拉公式):F cr=π2EI (μL)2式中:L为压杆的实际长度,μ为长度系数,μL为压杆的相当长度(有效长度),I为压杆横截面对中性轴的惯性矩,E为弹性模量。
注意:对于上图所示矩形截面压杆,有两种弯曲可能,在xz面弯曲,或yx面弯曲,具体在哪个面弯曲,取决于惯性矩I z=bℎ312和I y=ℎb312的大小。
若I y>I z,则在xz平面内弯曲;若I z>I y,则在xy平面内弯曲;即采用F cr=π2EI(μL)2计算细长压杆的临界载荷时,I取I y、I z里面的较小值。
4、不同约束的长度系数μ值?1)对于图a):细长压杆的一端为固定端约束,一端为自由端,μ=2 2)对于图b):细长压杆的两端均为铰链约束,μ=13)对于图c):细长压杆的一端为固定端约束,一端为铰链约束,μ=0.7 4)对于图d):细长压杆的两端均为固定端约束, μ=0.5约束的强弱程度顺序:固定端约束>铰链约束>自由端约束可知:约束程度越强,则μ值越小。
5、临界正应力总图?答:根据不同压杆临界正应力σcr与长细比λ之间的关系绘成图,即可得到压杆的临界正应力总图:结论:杆子长细比λ越大,临界正应力σcr(临界载荷F cr=σcr A)越小,则杆子越容易弯曲(实际经验也可知道,杆子越细越长,则越容易被压弯)。
6、压杆的稳定性计算?答:设压杆的临界载荷为F cr,压杆实际承受的工作载荷为F,定义安全系数:n=F crF(可知,对于固定的压杆,其临界载荷为一固定值,则实际承受的工作载荷越小,安全系数就越大,压杆也就越安全),出于工程安全的考虑,假设压杆所允许的工作安全系数为[n]st(大于1的数),则实际操作中就必须满足:n=F crF≥[n]st。
第10章压杆稳定学习目标:1.了解失稳的概念、压杆稳定条件及其实用计算;2.理解压杆的临界应力总图;3.掌握用欧拉公司计算压杆的临界荷载与临界应力。
对承受轴向压力的细长杆,杆内的应力在没有达到材料的许用应力时,就可能在任意外界的扰动下发生突然弯曲甚至导致破坏,致使杆件或由之组成的结构丧失正常功能,此时杆件的破坏不是由于强度不够引起的,这类问题就是压杆稳定问题。
本章主要从压杆稳定的基本概念、不同支撑条件下的临界力、欧拉公式的适用条件以及提高压杆稳定性的措施方面加以介绍。
第一节压杆稳定的概念在研究受压直杆时,往往认为破坏原因是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,杆才会发生破坏。
实验表明对于粗而短的压杆是正确的;但对于细长的压杆,情况并非如此。
细长压杆的破坏并不是由于强度不够,而是由于杆件丧失了保持直线平衡状态的稳定性造成的。
这类破坏称为压杆丧失稳定性破坏,简称失稳。
一、问题的提出工程结构中的压杆如果失稳,往往会引起严重的事故。
例如1907年加拿大魁北克圣劳伦斯河上长达548m的大铁桥,在施工时由于两根压杆失稳而引起倒塌,造成数十人死亡。
1909年,汉堡一个大型储气罐由于其支架中的一根压杆失稳而引起的倒塌。
这种细长压杆突然破坏,就其性质而言,与强度问题完全不同,杆件招致丧失稳定破坏的压力比招致强度不足破坏的压力要少得多,同时其失稳破坏是突然性,必须防范在先。
因而,对细长压杆必须进行稳定性的计算。
二、平衡状态的稳定性压杆受压后,杆件仍保持平衡的情况称为平衡状态。
压杆受压失稳后,其变形仍保持在弹性范围内的称为弹性稳定问题。
如图110-所示,两端铰支的细长压杆,当受到轴向压力时,如果是所用材料、几何形状等无缺陷的理想直杆,则杆受力后仍将保持直线形状。
当轴向压力较小时,如果给杆一个侧向干扰使其稍微弯曲,则当干扰去掉后,杆仍会恢复原来的直线形状,说明压杆处于稳定的平衡状态(如图)-所示)。