人教版九年级数学上册《圆周角》教学设计
- 格式:doc
- 大小:142.00 KB
- 文档页数:6
•••••••••••••••••关于圆周角教案四篇关于圆周角教案四篇作为一名专为他人授业解惑的人民教师,就有可能用到教案,教案是实施教学的主要依据,有着至关重要的作用。
来参考自己需要的教案吧!下面是小编为大家收集的圆周角教案4篇,供大家参考借鉴,希望可以帮助到有需要的朋友。
圆周角教案篇1教学任务分析教学目标知识技能1.了解圆周角与圆心角的关系.2.掌握圆周角的性质和直径所对圆周角的特征.3.能运用圆周角的性质解决问题.数学思考1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理能力和演绎推理能力.2.通过观察图形,提高学生的识图能力.3.通过引导学生添加合理的辅助线,培养学生的创造力.解决问题在探索圆周角与圆心角的关系的过程中,学会运用分类讨论的数学思想,转化的数学思想解决问题情感态度引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.重点圆周角与圆心角的关系,圆周角的性质和直径所对圆周角的特征.难点发现并论证圆周角定理.教学流程安排活动流程图活动内容和目的活动1 创设情景,提出问题活动2 探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系活动3 发现并证明圆周角定理活动4 圆周角定理应用活动5小结,布置作业从实例提出问题,给出圆周角的定义.通过实例观察、发现圆周角的特点,利用度量工具,探索同弧所对的圆心角与圆周角的关系,同弧所对的圆周角之间的关系.探索圆心与圆周角的位置关系,利用分类讨论的数学思想证明圆周角定理.反馈练习,加深对圆周角定理的理解和应用.回顾梳理,从知识和能力方面总结本节课所学到的东西.教学过程设计问题与情境师生行为设计意图[活动1 ]问题演示课件或图片(教科书图24.1-11):(1)如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位置,他们的视角(和)有什么关系?(2)如果同学丙、丁分别站在其他靠墙的位置和,他们的视角(和)和同学乙的视角相同吗?教师演示课件或图片:展示一个圆柱形的海洋馆.教师解释:在这个海洋馆里,人们可以通过其中的圆弧形玻璃窗观看窗内的海洋动物.教师出示海洋馆的横截面示意图,提出问题.教师结合示意图,给出圆周角的定义.利用几何画板演示,让学生辨析圆周角,并引导学生将问题1、问题2中的实际问题转化成数学问题:即研究同弧()所对的圆心角()与圆周角()、同弧所对的圆周角(、、等)之间的大小关系.教师引导学生进行探究.本次活动中,教师应当重点关注:(1)问题的提出是否引起了学生的兴趣;(2)学生是否理解了示意图;(3)学生是否理解了圆周角的定义.(4)学生是否清楚了要研究的数学问题.从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分,人们的需要产生了数学.将实际问题数学化,让学生从一些简单的实例中,不断体会从现实世界中寻找数学模型、建立数学关系的方法.引导学生对图形的观察,发现,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心.[活动2]问题(1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的?(2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的?教师提出问题,引导学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.由学生总结发现的规律:同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.教师再利用几何画板从动态的角度进行演示,验证学生的发现.教师可从以下几个方面演示,让学生观察圆周角的度数是否发生改变,同弧所对的圆周角与圆心角的`关系有无变化:(1)拖动圆周角的顶点使其在圆周上运动;(2)改变圆心角的度数;3.改变圆的半径大小.本次活动中,教师应当重点关注:(1)学生是否积极参与活动;(2)学生是否度量准确,观察、发现的结论是否正确.活动2的设计是为引导学生发现.让学生亲自动手,利用度量工具(如半圆仪、几何画板)进行实验、探究,得出结论.激发学生的求知欲望,调动学生学习的积极性.教师利用几何画板从动态的角度进行演示,目的是用运动变化的观点来研究问题,从运动变化的过程中寻找不变的关系.[活动3]问题(1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况?(2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?(3)另外两种情况如何证明,可否转化成第一种情况呢?教师引导学生,采取小组合作的学习方式,前后四人一组,分组讨论.教师巡视,请学生回答问题.回答不全面时,请其他同学给予补充.教师演示圆心与圆周角的三种位置关系.本次活动中,教师应当重点关注:(1)学生是否会与人合作,并能与他人交流思维的过程和结果.(2)学生能否发现圆心与圆周角的三种位置关系.学生是否积极参与活动.教师引导学生从特殊情况入手证明所发现的结论.学生写出已知、求证,完成证明.学生采取小组合作的学习方式进行探索发现,教师观察指导小组活动.启发并引导学生,通过添加辅助线,将问题进行转化.教师讲评学生的证明,板书圆周角定理.本次活动中,教师应当重点关注:(1)学生是否会想到添加辅助线,将另外两种情况进行转化(2)学生添加辅助线的合理性.(3)学生是否会利用问题2的结论进行证明.数学教学是在教师的引导下,进行的再创造、再发现的教学.通过数学活动,教给学生一种科学研究的方法.学会发现问题,提出问题,分析问题,并能解决问题.活动3的安排是让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题1的设计是让学生通过合作探索,学会运用分类讨论的数学思想研究问题.培养学生思维的深刻性.问题2、3的提出是让学生学会一种分析问题、解决问题的方式方法:从特殊到一般.学会运用化归思想将问题转化.并启发培养学生创造性的解决问题[活动4]问题(1)半圆(或直径)所对的圆周角是多少度?(2)90°的圆周角所对的弦是什么?(3)在半径不等的圆中,相等的两个圆周角所对的弧相等吗?(4)在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等吗?为什么?(5)如图,点、、、在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角?(6)如图, ⊙O的直径AB 为10cm,弦AC 为6cm, ∠ACB的平分线交⊙O于D, 求BC、AD、BD的长.学生独立思考,回答问题,教师讲评.对于问题(1),教师应重点关注学生是否能由半圆(或直径)所对的圆心角的度数得出圆周角的度数.对于问题(2),教师应重点关注学生是否能由90°的圆周角推出同弧所对的圆心角的度数是180°,从而得出所对的弦是直径.对于问题(3),教师应重点关注学生能否得出正确的结论,并能说明理由.教师提醒学生:在使用圆周角定理时一定要注意定理的条件.对于问题(4),教师应重点关注学生能否利用定理得出与圆周角对同弧的圆心角相等,再由圆心角相等得到它们所对的弧相等.对于问题(5),教师应重点关注学生是否准确找出同弧上所对的圆周角.对于问题(6),教师应重点关注(1)学生是否能由已知条件得出直角三角形ABC、ABD;(2)学生能否将要求的线段放到三角形里求解.(3)学生能否利用问题4的结论得出弧AD与弧BD相等,进而推出AD=BD.活动4的设计是圆周角定理的应用.通过4个问题层层深入,考察学生对定理的理解和应用.问题1、2是定理的推论,也是定理在特殊条件下得出的结论.问题3的设计目的是通过举反例,让学生明确定理使用的条件.问题4是定理的引申,将本节课的内容与所学过的知识紧密的结合起来,使学生很好地进行知识的迁移.问题5、6是定理的应用.即时反馈有助于记忆,让学生在练习中加深对本节知识的理解.教师通过学生练习,及时发现问题,评价教学效果.[活动5]小结通过本节课的学习你有哪些收获?布置作业.(1)阅读作业:阅读教科书P90—93的内容.(2)教科书P94 习题24.1第2、3、4、5题.教师带领学生从知识、方法、数学思想等方面小结本节课所学内容.教师关注不同层次的学生对所学内容的理解和掌握.教师布置作业.通过小结使学生归纳、梳理总结本节的知识、技能、方法,将本课所学的知识与以前所学的知识进行紧密联结,有利于培养学生数学思想、数学方法、数学能力和对数学的积极情感.增加阅读作业目的是让学生养成看书的习惯,并通过看书加深对所学内容的理解.课后巩固作业是对课堂所学知识的检验,是让学生巩固、提高、发展.圆周角教案篇2教学目标:(1)理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;(2)继续培养学生观察、分析、想象、归纳和逻辑推理的能力;(3)渗透由“特殊到一般”,由“一般到特殊”的数学思想方法.教学重点:圆周角的概念和圆周角定理教学难点:圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想.教学活动设计:(在教师指导下完成)(一)圆周角的概念1、复习提问:(1)什么是圆心角?答:顶点在圆心的角叫圆心角.(2)圆心角的度数定理是什么?答:圆心角的度数等于它所对弧的度数.(如右图)2、引题圆周角:如果顶点不在圆心而在圆上,则得到如左图的新的角∠ACB,它就是圆周角.(如右图)(演示图形,提出圆周角的定义)定义:顶点在圆周上,并且两边都和圆相交的角叫做圆周角3、概念辨析:教材P93中1题:判断下列各图形中的是不是圆周角,并说明理由.学生归纳:一个角是圆周角的条件:①顶点在圆上;②两边都和圆相交.(二)圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)(三)定理的应用1、例题:如图OA、OB、OC都是圆O的半径,∠AOB=2∠BOC.求证:∠ACB=2∠BAC让学生自主分析、解得,教师规范推理过程.说明:①推理要严密;②符号“”应用要严格,教师要讲清.2、巩固练习:(1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB 的度数?(2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数?说明:一条弧所对的圆周角有无数多个,却这条弧所对的圆周角的度数只有一个,但一条弦所对的圆周角的度数只有两个.(四)总结知识:(1)圆周角定义及其两个特征;(2)圆周角定理的内容.思想方法:一种方法和一种思想:在证明中,运用了数学中的分类方法和“化归”思想.分类时应作到不重不漏;化归思想是将复杂的问题转化成一系列的简单问题或已证问题.(五)作业教材P100中习题A组6,7,8圆周角教案篇3教材依据圆周角是新课标人教版九年级数学上册第二十四章第一节圆的有关性质的重要内容,本节内容依据新人教版九年级《课程标准》和《教师教学用书》及《初中数学新教材详解》。
圆周角教学目标1、学习圆周角概念2、论证圆周角定理教学重点:圆周角的概念和圆周角定理教学难点:发现并论证圆周角定理.一、引入新课在曲线运动中,轨迹是圆周的物体的运动是很常见的,如转动的电风扇上各点的运动,地球和各个行星绕太阳的运动等,今天我们就来学习最简单的圆周运动──匀速圆周运动。
二、探索新知圆周角的定理1、提出圆周角的度数问题问题:圆周角的度数与什么有关系?经过电脑演示图形,让学生观察图形、分析圆周角与圆心角,猜想它们有无关系.引导学生在建立关系时注意弧所对的圆周角的三种情况:圆心在圆周角的一边上、圆心在圆周角内部、圆心在圆周角外部.(在教师引导下完成)(1)当圆心在圆周角的一边上时,圆周角与相应的圆心角的关系:(演示图形)观察得知圆心在圆周角上时,圆周角是圆心角的一半.提出必须用严格的数学方法去证明.证明:(圆心在圆周角上)(2)其它情况,圆周角与相应圆心角的关系:当圆心在圆周角外部时(或在圆周角内部时)引导学生作辅助线将问题转化成圆心在圆周角一边上的情况,从而运用前面的结论,得出这时圆周角仍然等于相应的圆心角的结论.证明:作出过C的直径(略)圆周角定理:一条弧所对的周角等于它所对圆心角的一半.说明:这个定理的证明我们分成三种情况.这体现了数学中的分类方法;在证明中,后两种都化成了第一种情况,这体现数学中的化归思想.(对A层学生渗透完全归纳法)师:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半。
例题,如下图,△ABC 内接于00,AB=BC,∠ABC=120°,AD为00的直径,AD=6,那么BD=三、小试牛刀1、如图,AB是⊙O的直径,弦CD与AB相交于点E,∠ACD=60°,∠ADC=50°,求∠CEB的度数.2、如图,BC是⊙O的直径,A是⊙O上任一点,你能确定∠BAC的度数吗?四、总结这节课你收获了什么?。
人教版数学九年级上册24.1.4《圆周角定理》教学设计一. 教材分析人教版数学九年级上册24.1.4《圆周角定理》是本节课的主要内容。
圆周角定理是圆周角定理系列中的重要定理之一,也是后续学习圆的性质和圆的方程的基础。
本节课的内容包括圆周角定理的证明和应用。
教材通过丰富的例题和练习题,帮助学生理解和掌握圆周角定理,并能够运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,对角的性质有一定的了解。
但是,对于圆周角定理的理解和运用还需要进一步引导和培养。
因此,在教学过程中,需要注重引导学生通过观察和操作,发现和总结圆周角定理的规律。
三. 教学目标1.了解圆周角定理的内容和证明过程。
2.能够运用圆周角定理解决实际问题。
3.培养学生的观察能力、操作能力和推理能力。
四. 教学重难点1.圆周角定理的证明过程。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察和操作,发现和总结圆周角定理的规律。
2.运用多媒体辅助教学,展示圆周角定理的证明过程,增强学生的直观感受。
3.通过例题和练习题,让学生在实际问题中运用圆周角定理,巩固所学知识。
六. 教学准备1.多媒体教学设备。
2.圆规、直尺等绘图工具。
3.相关例题和练习题。
七. 教学过程1.导入(5分钟)通过提问方式,引导学生回顾相似三角形的性质和角的性质。
让学生思考:在圆中,圆周角和圆心角之间有什么关系?2.呈现(10分钟)展示圆周角定理的证明过程,引导学生观察和理解证明方法。
通过多媒体动画演示,让学生更直观地感受圆周角定理的应用。
3.操练(10分钟)让学生分组讨论,尝试解决一些与圆周角定理相关的问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)呈现一些例题和练习题,让学生独立解答。
教师选取部分学生的解答进行讲解和分析,巩固所学知识。
5.拓展(10分钟)引导学生思考:圆周角定理在实际问题中的应用。
人教版九年级上册24.1.4圆周角教学设计一、教学目标1.知道圆周角的定义2.能够计算圆周角的度数3.熟悉圆周角在实际应用中的运用二、教学重点1.圆周角的定义2.计算圆周角的度数三、教学难点1.熟悉圆周角在实际应用中的运用四、教学方法1.讲解:通过讲解圆周角的定义和计算方法,让学生掌握基本概念和方法。
2.实验:通过展示圆形物品,让学生亲身体验圆周角的度数。
3.案例分析:通过实例分析,帮助学生了解圆周角在实际应用中的运用。
五、教学过程1. 导入新知识通过展示圆形物品,如扇形、轮胎等,让学生感受圆形的特征,并引入圆周角的概念。
2. 讲解圆周角的定义让学生掌握圆周角的定义:圆周角是指夹在圆内的两条弧所对的角。
3. 讲解圆周角的计算方法1.讲解圆周角的度数:圆的周长为360度,因此圆周角所对的弧长与圆周长的比例为所对的角与360度的比例。
2.计算圆周角的度数:根据所对弧的长度与圆周长的比例以及圆周的度数制求得圆周角的度数。
4. 实验展示通过展示圆形物品,让学生通过手动旋转掌握圆周角的度数,并在班级中交流讨论。
5. 案例分析1.讲解圆周角在电子产品外观设计中的应用。
2.讲解圆周角在建筑、机器等领域中的应用。
六、教学评价通过布置作业,检测学生对圆周角的掌握程度,并通过课堂互动,了解学生对圆周角在实际应用中的理解情况。
七、板书设计1.圆周角的定义:夹在圆内的两条弧所对的角。
2.圆周角的计算方法:所对弧长与圆周长的比例。
八、课堂设计本节课内容较为抽象,需要通过实物展示和案例分析来帮助学生掌握基本概念和方法。
同时,教师还需要与学生进行及时互动,以确保学生的参与度和掌握程度。
人教版数学九年级上册教学设计24.1.4《圆周角》一. 教材分析《圆周角》是人教版数学九年级上册第24章的一部分,主要介绍了圆周角的定义、性质和应用。
通过本节课的学习,学生能够理解圆周角的概念,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念和性质,如圆的定义、半径、直径等。
同时,学生也具备了一定的观察、分析和解决问题的能力。
但是,对于圆周角的定义和性质,学生可能还比较陌生,需要通过实例和练习来进一步理解和掌握。
三. 教学目标1.知识与技能:理解圆周角的定义,掌握圆周角的性质,并能够运用圆周角解决一些实际问题。
2.过程与方法:通过观察、分析和归纳,培养学生的逻辑思维能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和解决问题的能力。
四. 教学重难点1.圆周角的定义和性质。
2.运用圆周角解决实际问题。
五. 教学方法1.讲授法:通过讲解圆周角的定义和性质,引导学生理解和掌握相关知识。
2.案例分析法:通过分析具体案例,让学生更好地理解圆周角的运用。
3.小组讨论法:通过小组讨论,培养学生的团队合作意识和解决问题的能力。
六. 教学准备1.课件:制作相关的课件,包括圆周角的定义、性质和应用等方面的内容。
2.案例:准备一些具体的案例,用于分析和解决实际问题。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾圆的基本概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)利用课件呈现圆周角的定义和性质,让学生初步了解并掌握相关知识。
3.操练(15分钟)让学生通过观察和分析具体的案例,运用圆周角的知识解决问题,巩固所学内容。
4.巩固(5分钟)让学生完成一些练习题,检查对圆周角知识的掌握程度,并对存在的问题进行讲解和辅导。
5.拓展(5分钟)引导学生进一步思考和探讨圆周角在实际问题中的应用,培养学生的解决问题的能力。
人教版九年级数学上册24.1.4《圆周角》教学设计一. 教材分析《圆周角》是人民教育出版社九年级数学上册第24章《圆》的第四节内容。
本节主要让学生通过探究圆周角的性质,掌握圆周角定理及其推论,并能在实际问题中运用。
圆周角定理是圆的内接四边形定理的重要组成部分,对于学生理解圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析学生在学习本节内容前,已经掌握了圆的基本概念、圆的性质、圆的周长和面积等知识。
但学生对于圆周角的理解和应用还不够深入,需要通过本节内容的学习,进一步巩固和提高。
同时,学生对于几何图形的观察和分析能力有待提高,需要在教学过程中加强引导和培养。
三. 教学目标1.知识与技能目标:使学生掌握圆周角定理及其推论,能运用圆周角定理解决简单问题。
2.过程与方法目标:通过观察、分析、推理等方法,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:圆周角定理及其推论。
2.难点:圆周角定理的证明和应用。
五. 教学方法1.采用问题驱动法,引导学生观察、分析、推理,从而得出圆周角定理。
2.运用案例教学法,让学生通过实际问题,运用圆周角定理解决问题。
3.采用小组合作学习法,培养学生的团队合作意识。
六. 教学准备1.准备相关的几何模型和图片,以便于学生观察和分析。
2.准备一些实际问题,供学生练习和应用。
3.准备PPT,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用PPT展示一些与圆有关的实际问题,引导学生思考圆周角的概念。
2.呈现(10分钟)利用PPT展示圆周角定理的内容,让学生初步了解圆周角定理。
3.操练(10分钟)让学生分组讨论,通过观察、分析、推理,证明圆周角定理。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)让学生运用圆周角定理解决一些实际问题,巩固所学知识。
5.拓展(10分钟)让学生进一步探索圆周角定理的推论,了解圆周角定理在几何中的应用。
周角和圆心角的度数,发现了什么?你能得到什么猜想?
教师利用几何画板演示“圆周角定理”
活动二:
1观察你所画的图形,思考圆心与圆周角之间有几种位置关系?并画出来。
2当圆心在圆周角的一边上时,如何证明活动2中所发现的结论?
3另外两种情况如何证明,可否转化成第一种情况呢?
教师引导学生从特殊情况入手证明所发现的结论,得出圆周角定理流后,请小组代表在白板上展示结果
小组交流,
4你能用所学的定理来证明下面的问题。
活动三
1如图,AB是⊙O的直径,请问:
∠C1、∠C2、∠C3的度数是。
2若∠C1、∠C2、∠C3是直角,那么∠AOB 是。
由此你又能得出什么结论?
二、小试牛刀
白板展示练习题
三、归纳总结
通过这堂课的学习你有什么收获?知道了哪些新知识?学会了做在学案纸上写出证明过程,学生代表在白板上展示。
《24.1.4 圆周角》教学设计
【教学目标】
一、知识目标:
1.理解圆周角的概念,掌握圆周角的两个特征、定理的内容及简单应用;
2.准确地运用圆周角定理及其推论进行简单的证明计算。
二、方法与过程目标:
1.通过观察、比较、分析圆周角与圆心角的关系,发展学生合情推理和演绎推理的能力;
2.通过观察图形提高学生的识图能力;
3.通过引导学生添加合理的辅助线,培养学生的创造力。
三.情感态度与价值观目标:
引导学生对图形的观察,激发学生的好奇心和求知欲并在运用数学知识解答问题的活动中获取成功的体验,建立学习的自信心。
【教学过程】
一、复习引入
2.判别各图中的角是不是圆心角,并说明理由。
二、新课讲授
知识点1、圆周角的概念:顶点在圆上,并且两边都与圆相交,这样的角叫做圆周角。
学以致用 练习 知识点2、探究:∠ACB 与∠AOB 对着同一条弧AB ,那么∠
ACB 与∠AOB 之间存在着怎样的数量关系呢?
可以发现,同弧所对的圆周角的度数等于这条弧所对的圆心
角的度数的一半。
结论的证明需分三种情况考虑:
①圆心在圆周角的一条边上;
②圆心在圆周角的内部;
③圆心在圆周角的外部。
对此结论加以证明。
这样,我们就得到圆周角定理:
一条弧所对的圆周角等于它所对的圆心角的一半。
学以致用
练习2.如图,点A 、B 、C 在圆O 上,已知∠AOB=60°,那么
∠ACB 等于( )
A .30° B.60° C.90°
D.120°
练习3.如图△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠
AOC=90°,则∠ABC 的度数是( )
A.30°
B.45°
C.60°
D.70°
BOC A ∠=∠21几何语言表示为:
练习2图练习3图
知识点3、圆周角定理的推论1:
同弧或等弧所对的圆周角相等,都等于这条弧所对圆心
角的一半。
练习4.如图,如果∠A=30°,则∠D=____. ∠BOC=____.
练习5.如图,如果∠BOC=70°,则∠A=____; ∠D=____.
练习6.点A是⊙O上一点,∠BAC=20°,则∠BOC的度数为()练习4、5图
A.60°
B.50°
C.40°
D.30°
变式拓展:圆的一条弦长等于它的半径,那么这条弦所对的圆周角的度数是()
A.30°或60° B. 60° C.150° D. 30°或150°
知识点4、圆周角定理推论2:
半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
练习7.如图,已知AB是⊙O的直径,点C在⊙O上,若∠CAB=25°,则∠ABC的度数为____.
例题讲解:
例4.如图,⊙O的直径AB的长为10 cm,弦AC的长为6 cm,∠ACB的平分线交⊙O于点D,求BC,AD,
BD的长.
三、课堂小结:今天我们学到了什么?
1.圆周角的定义:角的顶点在圆上,并且两边都与圆相交。
2.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。
推论:(1)同弧或等弧所对的圆周角相等;
(2)半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径。
四、课堂提升:
1. 点A是⊙O上一点,∠BAC=20°,则∠BOC的度数等于()
A.60°B.50° C.40°D.30°2.如图,已知圆心角∠BOC=76°,则圆周角∠BAC的度数是_____.
第1题图第2题图第3题图第4题图
3.如图,在⊙O中,弦AB=2cm,∠ACB=30°,则⊙O的直径为 cm.
4.如图,已知经过原点的⊙P与x、y轴分别交于A、B两点,点C是劣弧OB上一点,则∠ACB的度数为()
A.80° B.90°C.100° D.无法确定
5.已知:△ABC的三个顶点在⊙O上,∠BAC=50°,∠ABC=60°,求∠AOB的度数.
五、作业布置:
完成课本第88页第1、3和4题.。