研究生应用弹塑性力学复习与考试
- 格式:doc
- 大小:25.50 KB
- 文档页数:1
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
塑性力学考试题及答案一、选择题(每题2分,共20分)1. 塑性变形与弹性变形的主要区别是()。
A. 塑性变形是可逆的B. 弹性变形是可逆的C. 塑性变形是不可逆的D. 弹性变形是不可逆的2. 材料在塑性变形过程中,其应力-应变曲线上的哪一点标志着材料的屈服点?A. 最大应力点B. 最大应变点C. 应力-应变曲线上的转折点D. 应力-应变曲线的起始点3. 下列哪项不是塑性变形的特征?A. 材料形状的改变B. 材料体积的不变C. 材料内部结构的不可逆变化D. 材料的弹性恢复4. 塑性变形的三个基本假设中,不包括以下哪一项?A. 材料是连续的B. 材料是各向同性的C. 材料是不可压缩的D. 材料是完全弹性的5. 塑性变形的流动法则通常采用哪种形式来描述?A. 线性形式B. 非线性形式C. 指数形式D. 对数形式二、简答题(每题10分,共30分)6. 简述塑性变形的三个基本假设及其物理意义。
7. 解释什么是塑性屈服准则,并举例说明常用的屈服准则。
8. 描述塑性变形过程中的加载和卸载路径,并解释它们的区别。
三、计算题(每题25分,共50分)9. 给定一个材料的应力-应变曲线,如果材料在达到屈服点后继续加载,求出在某一特定应变下的材料应力。
10. 假设一个材料在单轴拉伸条件下发生塑性变形,已知材料的屈服应力和弹性模量,求出在塑性变形阶段的应变率。
答案一、选择题1. 答案:C2. 答案:C3. 答案:D4. 答案:D5. 答案:B二、简答题6. 塑性变形的三个基本假设包括:- 材料是连续的:假设材料没有空隙和裂缝,是连续的均匀介质。
- 材料是各向同性的:假设材料在所有方向上具有相同的物理性质。
- 材料是不可压缩的:假设在塑性变形过程中材料的体积保持不变。
7. 塑性屈服准则是判断材料是否开始发生塑性变形的条件。
常用的屈服准则包括:- Von Mises准则:适用于各向同性材料,当材料的等效应力达到某一临界值时,材料开始发生塑性变形。
文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持. 考试方式: 太原理工大学 弹塑性力学 试卷 适用专业: 矿业工程 考试日期: 时间: 120分钟 共 6 页 一、选择题(15) 1.本构关系是材料本身固有的一种物理关系,指材料内任一点处(应力和应变、应力和外力)之间的对应关系,这种关系与坐标系的选择(有关、无关)。
2.应力是(标量、矢量),它的大小与其作用面的方向(有关、无关),与作用面的面积(有关、无关)。
3.如果物体内某一点处的位移u=v=0,则该点的正应变( 一定、不一定)等于零。
4.为保证物体的连续性,物体内部的应变分量一定要满足(变形协调方程、本构方程)。
5.平衡微分方程是通过在物体内任一点取个微元体,建立所有( 力、应力)之间的平衡条件导出的。
6.材料进入塑性状态后,应力与应变之间(是、不是)一一对应的,某一应力对应的应变与(温度、加载历史)有关。
7.在进行结构设计时,采用弹性设计方法要比用弹塑性设计方法(节约、浪费)材料。
8.材料的弹性性质(受、不受)塑性变形的影响是弹塑性理论的假设之一。
9.材料的屈服极限在数值上与(比例极限、弹性极限)非常接近,工程上可以认为近似相等。
10.对于特定的物体,所受外力一旦给定,它内部的应力状态就是完全(确定、不确定)的了,与研究问题时坐标系的选取方式(有关、无关)。
二、简要回答下列问题(40) 1. 什么是屈服准则? 以Tresca 屈服准则为例说明如何确定屈服常熟。
(10) 2. 圣维南原理的内容是什么?它在求解弹性力学问题中有什么意义?(10) 3. .弹性平面问题的类型及各自的特点有哪些?。
(10) 4.弹塑性力学中简化后的应力——应变关系模型有哪些?绘出它们各自的应力——应变关系曲线(10)。
三、列出弹性平面应力问题的数学模型,并论述求解该模型的方法?(20) 四、计算题(25) 1. 某种材料制成的圆筒如图所示,其内半径为a ,外半径为b ,在内边界承受集度为q 的均匀分布的表面力作用,假定圆筒材料为理想弹塑性,屈服极限为s ,屈服时符合Tresca 准则,试确定该圆筒所能承受的弹性极限载荷。
考试科目:弹塑性力学试题班号 研 班 姓名 成绩一、 概念题(1) 最小势能原理等价于弹性力学平衡微分方程和静力边界条件,用最小势能原理求解弹性力学近似解时,仅要求位移函数满足已知位移边界条件。
(2) 最小余能原理等价于 应变协调 方程和 位移 边界条件,用最小余能原理求解弹性力学近似解时,所设的应力分量应预先满足平衡微分方程 和静力边界条件。
(3) 弹性力学问题有位移法和应力法两种基本解法,前者以位移为基本未知量,后者以 应力为基本未知量。
二、已知轴对称的平面应变问题,应力和位移分量的一般解为:利用上述解答求厚壁圆筒外面套以绝对刚性的外管,厚壁圆筒承受内压p 作用,试求该问题的应力和位移分量的解。
解:边界条件为:a r =时:p r -=σ;0=θτrb r =时:0=r u ;0=θu 。
将上述边界条件代入公式得: 解上述方程组得:则该问题的应力和位移分量的解分别为: 三、已知弹性半平面的o点受集中力p利用上述解答求在弹性半平面上作用着n 这些力到所设原点的距离分别为i y ,y解:由题设条件知,第i 个力i p 在点(x ,y )处产生的应力将为: 故由叠加原理,n 个集中力构成的力系在点(x ,y )处产生的应力为:四、一端固定,另一端弹性支承的梁,其跨度为l ,抗弯刚度EI 为常数,弹簧系数为k ,承受分布荷载)(x q 作用。
试用最小势能原理导出该梁以挠度形式表示的平衡微分方程和静力边界条件。
解:第一步:全梁总应变能为:dx dx w d EI wdv U l v 202221⎰⎰⎥⎦⎤⎢⎣⎡== 外力做功为:⎰=-=ll x kw qwdx T02|21总势能为:l x l lkw qwdx dx dx w d EI T U =⎰⎰+-⎥⎦⎤⎢⎣⎡=-=∏|2121202022 第二步:由最小势能原理可知:0=∏δ等价于平衡微分方程和静力边界条件。
l x l lw kw wdx q dx dx w d dx w d EI =⎰⎰+-⎪⎪⎭⎫⎝⎛⎥⎦⎤⎢⎣⎡=|022022δδδ (*) 其中=⎪⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰dx dx w d dx w d EI l22022δdx dx dw dx d dx w d EI l ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⎥⎦⎤⎢⎣⎡⎰δ022 将其代入(*)式并整理可得:由于当0=x 时,0=dxdw ,022=dx w d ;所以平衡微分方程为:0)(2222=-⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛x q dx w d EI dx d (0≤x ≤l )y静力边界条件为:⎪⎪⎩⎪⎪⎨⎧=⎪⎪⎭⎫ ⎝⎛=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-==002222l x lx dx w d dx w d EI dx d kw五、已知空间球对称问题的一般解为:B REA EB R EA E R BR A u T R R 332)1(21)1(221μμσμμσ++-=+--=+=其中R 是坐标变量,R u 是径向位移,R σb a q q ,q 时的解答。
中南大学研究生“弹塑性力学”考试试题
(开卷)
1.谈谈你对单元体的数学与物理意义的理解。
2.你认为应力(变)张量、主应力(变)、应力(变)不变量描述一
点的应力(变)状态各有什么优点
3.试写出各向同性弹性应变能的表达式并导出其弹性本构方程。
4.请详细论述塑性本构建模的基本方法并写出一种具体本构方程。
5.谈谈你从应力函数逆解法中得到的启示
6.给出一个滑移线法求解塑性力学平面问题的例子。
7.谈谈你对“弹塑性力学”课程学习的体会。
主讲人:郭少华
2007.11.6。
弹塑性⼒学总复习《弹塑性⼒学》课程第⼀篇基础理论部分第⼀章应⼒状态理论1.1 基本概念1.应⼒的概念应⼒:微分⾯上内⼒的分布集度。
从数学上看,应⼒sPF s ??=→?0lim ν由于微分⾯上的应⼒是⼀个⽮量,因此,它可以分解成微分⾯法线⽅向的正应⼒νσ和微分⾯上的剪应⼒ντ。
注意弹塑性⼒学中正应⼒和剪应⼒的正负号规定。
2.⼀点的应⼒状态(1)⼀点的应⼒状态概念凡提到应⼒,必须同时指明它是对物体内哪⼀点并过该点的哪⼀个微分⾯。
物体内同⼀点各微分⾯上的应⼒情况,称为该点的应⼒状态。
(2)应⼒张量物体内任⼀点不同微分⾯上的应⼒情况⼀般是不同的,这就产⽣了⼀个如何描绘⼀点的应⼒状态的问题。
应⼒张量概念的提出,就是为了解决这个问题。
在直⾓坐标系⾥,⼀点的应⼒张量可表⽰为=z zy zx yz yyx xz xy x ij στττστττσσ若已知⼀点的应⼒张量,则过该点任意微分⾯ν上的应⼒⽮量p就可以由以下公式求出:n m l p xz xy x x ττσν++= (1-1’a ) n m l p yz y yx y τστν++=(1-1’b )n m l p z zy zx z σττν++=(1-1’c )由式(1-1),还可进⼀步求出该微分⾯上的总应⼒p 、正应⼒νσ和剪应⼒v τ: 222z y x p p p p ++=(1-2a )nl mn lm n m l zx yz xy z y x τττσσσσν222222+++++=22ννστ-=p(1-2c )(3)主平⾯、主⽅向与主应⼒由⼀点的应⼒状态概念可知,通过物体内任⼀点都可能存在这样的微分⾯:在该微分⾯上,只有正应⼒,⽽剪应⼒为零。
这样的微分⾯即称为主平⾯,该⾯的法线⽅向即称为主⽅向,相应的正应⼒称为主应⼒。
主应⼒、主⽅向的求解在数学上归结为求解以下的特征问题:}{}]{[i n i ij n n σσ=(1-3)式中,][ij σ为该点应⼒张量分量构成的矩阵,n σ为主应⼒,}{i n 为主⽅向⽮量。
研究生弹塑性考试试题1. 简答题:(每小题2分)(1) 弹性本构关系和塑性本构关系的各自主要特点是什么?(2) 偏应力第二不变量J 2的物理意义是什么?(3) 虚位移原理是否适用于塑性力学问题?为什么?(4) 塑性内变量是否可以减小?为什么?(5) Tresca 屈服条件和Mises 屈服条件是否适用于岩土材料?为什么?(6) 解释:在应力空间中为什么应力状态不能位于加载面之外?(7) π平面上的点所代表的应力状态有何特点?(8) 举例说明屈服条件为各向同性的物理含义?2. 岩土材料若服从Drucker-Prager 屈服条件,试使用关联流动法则求塑性体积应变增量的表达式?(8分)3. 试确定下面的平面应变状态是否存在?(6分)εx =Axy 2,εy =Bx 2y ,γxy =0,A 、B 为常数4. 正方形薄板三边固定,另一边承受法向压力b x p p π-=sin0,如图所示,设位移函数为 0=u by b x a v 2sin sin 2ππ= 利用Ritz 法求位移近似解(泊松比ν=0)。
(15分)y xabA BC O(第4题图) (第5题图)5. 如图所示的矩形薄板OABC ,OA 边与BC 边为简支边,OC 边与AB 边为自由边。
板不受横向荷载,但在两个简支边上受大小相等而方向相反的均布弯矩M 。
试证,为了将薄板弯成柱面,即w =f (x ),必须在自由边上施加以均布弯矩νM 。
并求挠度和反力。
(15分)6. 如图所示矩形截面梁受三角形分布荷载作用,试检验应力函数ϕ=Ax 3y 3+Bxy 5+Cx 3y +Dxy 3+Ex 3+Fxy能否成立。
若能成立求出应力分量。
(15分)(第6题图)7.8. 一材料质点处在平面应变状态下(εz =0),若假定材料的弹性变形相对其塑性变形较小可忽略,应力应变关系服从Levy-Mises 增量理论,即d εij =d λs ij ,且材料体积是不可压缩的,试证明σz =21(σx +σy ) 进一步证明在此情况下,Tresca 屈服条件和Mises 屈服条件重合。
期末考试范围:1.推导公式,两类物理方程互换推导;2.平面直角坐标的逆解法,要求画出面力分布规矩;3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
4.半空间问题受法向集中力问题;5.平面问题的位移变分,指定里兹法,也给出了里兹法公式;6.1.推导公式,两类物理方程互换推导1[()]1[()]1[()]x x y z y y z x z z x y E E Eεσμσσεσμσσεσμσσ=-+=-+=-+⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=⎪⎪⎭⎫ ⎝⎛-++=θμμεμσθμμεμσθμμεμσ211211211z z y y x x E EE若不计体力,试推到分别用应变、应力、应力函数表示的相容方程。
2.平面直角坐标的逆解法,要求画出面力分布规矩;COxybh2l 2l例:设能否作为应力函数?并分析其所能解决的问题。
223126y a y a Φ+=xF exF已知函数([)== a y3 + bx2, a、b为常数。
试分析:1.该函数能否作为应力函数使用;(7分)2.如能作为应力函数使用,在左图所示不计体力的单位厚平板上,画出上述函数能够解决的问题。
(8分)女°厂l3.平面极坐标半逆解法,写出所有应力边界条件,等效应力可以不用积分最终结果。
已知曲杆内外半径分别为a 、b '一端固定,另一端受集中力F 作用,试求应力分量半定解,并写出除固定端外的所有边界条件(不用计算待定常数)。
可设定应力函数吵=(A p '+�+Cp+Dp ln p }in ,p。
一一一一鲁酝Xo , ,p a,y4.半空间问题受法向集中力问题;里兹法·一--6-c,忒确化方程吁-c ,化曲E 点处的茄宁0千0:.To;t __ / __ (T。
I I今J某杆件所用材料的应力应变曲线为σT=B∈0.5,若杆件在颈缩前的工程应变为0.4,当工程应变再增加多少时,杆件方能进入颈缩状态。
10级研究生应用弹塑性力学课程复习与考试
考试方式:开卷考试考试内容:书中前四章相关内容;课件内容
考试重点:
1、三维应力状态主应力(含课上例题);
2、应力张量分解(含求应力不变量);
3、第一章习题1-5、6、7;
4、应变张量分解及分解的意义;
5、什么情况下采用“体积不变”假设,意义何在;
6、“应变协调方程”的物理意义,怎样保证位移的连续性;
7、两类平面问题;
8、第二章习题2-2、4、5、7;
9、Tresca和Mises屈服条件及应用;
10、莱维(Levy)-米泽斯(Mises)本构方程及应用条件;
11、普朗特(Prandtl)-罗伊斯(Reuss)本构方程及应用条件;
12、增量理论、全量理论、二者关系及相应假设条件;
13、简单加载定理及条件,单一曲线假设;
14、德鲁克公设和伊柳辛公设的意义;
15、逆解法和半逆解法的解题思路;
16、利用边界上 函数及其导数的力学意义求解弹塑性力学问题时的特点;
17、第三章习题3-1、2、3、5、6;
18、第四章习题4-1、3、5、6。
19、弹性和塑性是可变形固体的基本属性,两者的主要区别是什么?
20、试给出理想弹塑性模型、理想刚塑性模型,并解释如何应用?
21、试给出线性强化弹塑性模型、线性强化刚塑性模型?
21、弹塑性力学的基本假定有哪些?
23、试解释何为等倾面?等倾面上的正应力和正应变有何特点?
24、试解释一点的六个应变分量完全决定该点的应变状态。
25、何谓主应力、主应变?
26、试述应变协调方程的物理意义?
27、何谓本构方程?其作用是什么?。