弹塑性力学博士生考题03答案
- 格式:doc
- 大小:50.00 KB
- 文档页数:3
弹塑性理论考试题及答案一、单项选择题(每题2分,共10分)1. 弹塑性理论中,材料的屈服准则通常用以下哪个参数表示?A. 应力B. 应变C. 弹性模量D. 屈服应力答案:D2. 弹塑性材料在循环加载下,其行为主要受哪个参数的影响?A. 最大应力B. 最大应变C. 应力幅值D. 应变幅值答案:C3. 根据弹塑性理论,材料的硬化指数n通常用来描述什么?A. 材料的弹性B. 材料的塑性C. 材料的断裂特性D. 材料的疲劳特性答案:B4. 在弹塑性理论中,哪个参数用来描述材料在塑性变形后能否恢复原状?A. 弹性模量B. 屈服应力C. 塑性应变D. 弹性应变答案:D5. 弹塑性材料在受到拉伸应力作用时,其应力-应变曲线通常呈现哪种形状?A. 线性B. 非线性C. 抛物线D. 指数曲线答案:B二、多项选择题(每题3分,共15分)6. 弹塑性理论中,材料的屈服准则可以由以下哪些因素确定?A. 应力状态B. 应变状态C. 温度D. 材料的微观结构答案:A|B|C|D7. 弹塑性材料在循环加载下,其疲劳寿命主要受哪些因素的影响?A. 应力幅值B. 材料的屈服应力C. 循环加载频率D. 材料的微观缺陷答案:A|B|C|D8. 在弹塑性理论中,材料的硬化行为可以通过以下哪些方式来描述?A. 硬化指数B. 硬化模量C. 应力-应变曲线D. 屈服应力答案:A|B|C9. 弹塑性材料在受到压缩应力作用时,其应力-应变曲线通常呈现以下哪些特点?A. 初始阶段为弹性B. 达到屈服点后进入塑性变形C. 塑性变形后材料体积不变D. 卸载后材料能够完全恢复原状答案:A|B|C10. 弹塑性理论中,材料的断裂特性可以通过以下哪些参数来描述?A. 断裂韧性B. 应力集中系数C. 材料的硬度D. 材料的塑性应变答案:A|B|C|D三、简答题(每题5分,共20分)11. 简述弹塑性理论中材料的屈服现象。
答:在弹塑性理论中,材料的屈服现象是指材料在受到一定的应力作用后,从弹性变形转变为塑性变形的过程。
2005年结构工程博士研究生入学考试弹塑性力学试卷答案第一道题答案:弹塑性力学问题有两类不同的提法和解法:(1)微分提法及其解法;(2)变分提法及其解法。
微分提法是从研究固体内的任意一个微元体出发,考虑微元体的平衡关系、几何关系和物理(本构)关系,由此建立起问题所需满足的基本方程(包括平衡方程、几何方程和本构方程),从而把问题归结为在给定的边界条件下求偏微分方程的边值问题。
变分提法则直接处理整个固体系统,通过考虑系统的能量关系,由此建立起一些泛函变分方程,从而把问题归结为在给定的约束条件下求泛函极值的变分问题。
一、微分提法的基本方程为:1)平衡微分方程:2,20()iij j i u X tσρ∂+=∂ 2)几何方程:,,1()2ij i j j i u u ε=+及,,,,ij kl kl ij ik jl jl ik εεεε+=+3)本构方程:111223ij ij kk ij ij ij ij kk ij E Ed dS d S d G E ννεσσδνελσδ+⎫=-⎪⎪⎬-⎪=++⎪⎭,弹性状态,塑性状态微分提法的基本解法:一种是以位移作为基本未知函数求解,在求出位移后,再求得其它的未知函数,这种解法称为位移法;另一种是以应力作为基本未知函数求解,在求出应力后,再求得其它的未知函数,这种解法称为应力法。
二、变分提法的基本方程为:1)位移变分方程:ij ij VW dV U δσδεδ==⎰⎰⎰或()0P i u δ∏=2)应力变分方程:''WU δδ=或0c δ∏=变分提法的基本解法:Ritz 法和迦辽金法。
微分提法对应的数学问题是偏微分方程的边值问题,因此,不管是采用位移法或是应力法求解,一般情况下,除了一些简单问题外,绝大多数问题的求解是相当困难的,在边界条件比较复杂时,甚至不可能求得解。
这就使得近似解法具有极为重要的意义。
变分提法对应的数学问题是在给定的约束条件下求泛函极值的变分问题,可以通过Ritz 法或迦辽金法等直接求解问题的近似解答,实际上是弹塑性力学问题近似解法中最有效的方法之一,而且,它还构成了当前工程上普遍应用的有限元法的理论基础。
第二章 应力理论和应变理论2—15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx =ax+by ,σy =cx+dy-γy , τxy =-dx-ay ;试根据直边及斜边上的边界条件,确定常数a 、b 、c 、d 。
解:首先列出OA 、OB 两边的应力边界条件:OA 边:l 1=-1 ;l 2=0 ;T x = γ1y ; T y =0 则σx =-γ1y ; τxy =0代入:σx =ax+by ;τxy =-dx-ay 并注意此时:x =0 得:b=-γ1;a =0;OB 边:l 1=cos β;l 2=-sin β,T x =T y =0则:cos sin 0cos sin 0x xy yxy σβτβτβσβ+=⎧⎨+=⎩………………………………(a )将己知条件:σx= -γ1y ;τxy =-dx ; σy =cx+dy-γy 代入(a )式得:()()()1cos sin 0cos sin 0y dx b dx cx dy y c γβββγβ-+=⎧⎪⎨--+-=⎪⎩化简(b )式得:d =γ1ctg 2β;化简(c )式得:c =γctg β-2γ1 ctg 3β2—17.己知一点处的应力张量为31260610010000Pa ⎡⎤⎢⎥⨯⎢⎥⎢⎥⎣⎦试求该点的最大主应力及其主方向。
解:由题意知该点处于平面应力状态,且知:σx =12×103 σy =10×103 τxy =6×103,且该点的主应力可由下式求得:(()()31.233331210102217.0831******* 6.082810 4.9172410x yPa σσσ⎡++⎢=±=⨯⎢⎣⨯=⨯=±⨯=⨯则显然:3312317.08310 4.917100Pa Pa σσσ=⨯=⨯=σ1 与x 轴正向的夹角为:(按材力公式计算)()22612sin 22612102cos 2xyx ytg τθθσσθ--⨯-++====+=--+显然2θ为第Ⅰ象限角:2θ=arctg (+6)=+80.5376°题图1-3则:θ=+40.268840°16' 或(-139°44')2—19.己知应力分量为:σx =σy =σz =τxy =0,τzy =a ,τzx =b ,试计算出主应力σ1、σ2、σ3并求出σ2的主方向。
中国科学技术大学 博士入学考试试题 弹塑性力学 2002
(共五题,每题20分)
一、 矢量与张量运算
(1) 已知矢量~3~2~1~646e e e u −−=,矢量~3~2~1~e 8e 2e 4v −−=,求两矢量的点积~
~.v u 与矢量积~
~v u ×。
(2) 若~T 为二阶对称张量,~W 为二阶反对称张量,证明~T 与~
W 的标量积为零,0:~
~=W T 。
二、
(1) 设某点的应力状态为211/18cm Kg =σ,222/50cm Kg −=σ,
233/32cm Kg =σ,23113/24cm Kg ==σσ,其余应力分量为零,求该点的主应力及相应的主方向。
(2) 设某点的应力状态可用主应力表示为321,,σσσ,求外法线为~
33~22~11~e n e n e n n ++=面元上的应力矢量~
n t 及其法向应力分量nn σ和切向应力分量τσn 。
三.已知速度场为:,0V ,e )y y x (A V ,e )xy x (A V z kt 32y kt 23x =+=+−=−−其中A ,k 为常数。
求t=0,
)0,1,1{x ~=点的空间速度梯度L ~,应变率张量D ~和旋转率张量W ~。
四.求下列应力状态下的主偏应力及偏应力张量的第二不变量J 2(单位kg/cm 2)
(1)3011=σ
(2)102112=σ=σ
(3)τ=σ=σσ=σ211211,
五.试述经典塑性理论中的Mises 屈服准则和Tresca 屈服准则,说明两准则间的关系。
二、填空题:(每空2分,共8分)1、在表征确定一点应力状态时,只需该点应力状态的-------个独立的应力分量,它们分别是-------。
(参照oxyz直角坐标系)。
2、在弹塑性力学应力理论中,联系应力分量与体力分量间关系的表达式叫---------方程,它的缩写式为-------。
三、选择题(每小题有四个答案,请选择一个正确的结果。
每小题4分,共16分。
)1、试根据由脆性材料制成的封闭圆柱形薄壁容器,受均匀内压作用,当压力过大时,容器出现破裂。
裂纹展布的方向是:_________。
A、沿圆柱纵向(轴向)B、沿圆柱横向(环向)C、与纵向呈45°角D、与纵向呈30°角2、金属薄板受单轴向拉伸,板中有一穿透形小圆孔。
该板危险点的最大拉应力是无孔板最大拉应力__________倍。
A、2B、3C、4D、53、若物体中某一点之位移u、v、w均为零(u、v、w分别为物体内一点,沿x、y、z直角坐标系三轴线方向上的位移分量。
)则在该点处的应变_________。
A、一定不为零B、一定为零C、可能为零D、不能确定4、以下________表示一个二阶张量。
A、B、C、D、四、试根据下标记号法和求和约定展开下列各式:(共8分)1、;(i ,j = 1,2,3 );2、;五、计算题(共计64分。
)1、试说明下列应变状态是否可能存在:;()上式中c为已知常数,且。
2、已知一受力物体中某点的应力状态为:式中a为已知常数,且a>0,试将该应力张量分解为球应力张量与偏应力张量之和。
为平均应力。
并说明这样分解的物理意义。
3、一很长的(沿z轴方向)直角六面体,上表面受均布压q作用,放置在绝对刚性和光滑的基础上,如图所示。
若选取=ay2做应力函数。
试求该物体的应力解、应变解和位移解。
(提示:①基础绝对刚性,则在x=0处,u=0 ;②由于受力和变形的对称性,在y=0处,v=0 。
)题五、3图4、已知一半径为R=50mm,厚度为t=3mm的薄壁圆管,承受轴向拉伸和扭转的联合作用。
2003年结构工程博士研究生入学考试
弹塑性力学试卷答案
第一道题答案:
圣维南原理可以这样陈述:如果把作用在物体表面一小部分边界上的面力,被分布不同但静力等效的面力(主矢量相同,对同一点的主矩也相同)所代替,那么,近处的应力分布将有显著的改变,但远处所受的影响小得可以忽略不计。
圣维南原理也可以这样陈述:如果物体一小部分边界上的面力是一自相平衡的力系(主矢量及主矩都等于零),那么,这个面力就只会在靠近受力表面附近产生显著的应力,远处(与受力表面之尺寸相较)产生的应力可以忽略不计。
上面两种陈述是一致的,因为,静力等效的两组面力,它们的差异是一个平衡力系。
正确理解和运用圣经南原理的关键是弄清“一小部分”,“静力等效”,“近处与远处”的概念。
实践应用中,圣维南原理可提供:
1.我们知道,弹性力学问题在数学上被称为边值问题,其待求的未知量(应力、位移、应变)完全满足基本方程并不困难,但是,要求在全部边界上都逐点地满足边界条件,往往会发生很大困难。
为了使问题得到简化或有解,在符合圣维市原理的那部分边界上,可以放弃严格的逐点边界条件,而改为满足另一组静力等效的以合力形式表示的整体边界条件。
这对于离边界较远处的应力状态,并无显著的误差。
这已经为理论分析和实验所证实。
2.当物体的一小部分边界,仅仅知道物体所受外力的合力,而不能确知其分布方式时,就不能逐点地写出面力的边界条件,因而难以求解或无法求解。
根据圣维南原理,可以在这一小部分边界,直接写合力条件进行求解。
3.当物体一小部分边界上的位移边界条件不能精确满足时,有时也可以应用圣维南原理得到有用的解答。
4.在工程结构的受力分析中,根据圣维南原理,有时可近似地判断应力分布和应力集中的情况。
第三道题答案:
第五道题答案:
第四道题答案。