计算流体基础
- 格式:pdf
- 大小:967.71 KB
- 文档页数:14
第1章 流体力学与计算流体力学基础机进行数值计算,模拟流体流动时的各种相关物理现象,包括流动、热传导、声场等。
计算流体动力学分析广泛应用于航空航天设计、汽车设计、生物医学工业、化工处理工业、1.1 流体力学基础本节将介绍流体力学一些重要的基础知识,包括流体力学的基本概念和基本方程。
流体力学是进行流体力学工程计算的基础,如果想对计算的结果进行分析与整理,在设置边界条件时有所依据,那么学习流体力学的相关知识是必要的。
1.1.1 一些基本概念(1)流体的密度流体密度的定义是单位体积内所含物质的多少。
若密度是均匀的,则有:VM=ρ (1-1) 式中:ρ为流体的密度;M 是体积为V 的流体内所含物质的质量。
由上式可知,密度的单位是kg/m 3。
对于密度不均匀的流体,其某一点处密度的定义为:VMV ΔΔ=→Δ0limρ (1-2)2 Fluent 17.0流体仿真从入门到精通例如,4℃时水的密度为10003kg /m ,常温20℃时空气的密度为1.243kg /m 。
各种流体的具体密度值可查阅相关文献。
流体的密度是流体本身固有的物理量,随着温度和压强的变化而变化。
(2)流体的重度流体的重度与流体密度有一个简单的关系式,即:g ργ= (1-3)式中:g 为重力加速度,值为9.812m /s 。
流体的重度单位为3N /m 。
(3)流体的比重流体的比重定义为该流体的密度与4℃时水的密度之比。
(4)流体的粘性在研究流体流动时,若考虑流体的粘性,则称为粘性流动,相应地称流体为粘性流体;若不考虑流体的粘性,则称为理想流体的流动,相应地称流体为理想流体。
流体的粘性可由牛顿内摩擦定律表示:dyduμτ= (1-4)牛顿内摩擦定律适用于空气、水、石油等大多数机械工业中的常用流体。
凡是符合切应力与速度梯度成正比的流体叫做牛顿流体,即严格满足牛顿内摩擦定律且µ保持为常数的流体,否则就称其为非牛顿流体。
例如,溶化的沥青、糖浆等流体均属于非牛顿流体。
第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler或Navier-Stokes方程)以发现各种流动现象规律的学科。
限制其流动的固体壁之间的相互作用问题。
内部绕流外部绕流
7
龙卷风雷暴
全球气候飓风飞机舰艇
空气污染河流、水利
高速列车潜艇
11
水上运动自行车赛艇
赛车冲浪
建筑
农业:灌溉
25 2627 2829
30
Basic Fins Vented Fins
Slotted Chamfered Corner
Corners Corners Cutting
拐角修正即可以达到减振效果
流固耦合效应研究—
39
¾风荷载预测——大连中国石油大厦(2007年,2009年)
三维鞍形薄膜屋盖(2001年-至今)
41
CFD数值模拟的模型示意图
流场速度分布矢量图
45
深圳大运会体育场(2007年)
流场速度分布矢量图
47
¾复杂地形的风环境预测与评估
50
度
为0.4665R(FAST反射面距离球心的半径为R,R=300m)。
馈源运动球面与FAST反射面之间的关系示意图0度风向角下馈源运动球面附近的风场分布该高度处的风场由于受到山势的阻
挡效应,FAST反射面上空的相当高
55Space Structure Research Center, HIT, CHINA 55/60
210度
210度
无挡风墙
挡风墙(a)
56Space Structure Research Center, HIT, CHINA 56/60210度
210度
挡风墙(b)
挡风墙(c)。
计算流体力学基础及其应用计算流体力学(CFD)是计算机运用精确的数学模型和算法来研究流体力学物理过程的一种技术。
它利用计算机模拟方法处理流体流动和相互作用的过程,以更准确、更快捷的方式研究热流体流动、传热、传质和湍流等物理过程的问题。
CFD的基础是数学方面的流体力学,应用计算机模拟的基本方法是数值方法,用于分析各种流体流动问题以及相关热传导、传质等热力学现象。
此外,计算流体力学还集成有计算机动力学,流体动力学,热力学,结构力学,能量方法,计算工程和多物理场的数值模拟技术,可以更加精准地研究流体动力学,热传递,流体机械,复杂流动等问题。
CFD在工程实践中具有重要作用,其应用领域非常广泛,包括空气、液体、气体和粘性流动等各种固体表面及流体体系的运动和相互作用。
例如,可以用来分析大气环境中污染物的扩散,水力学中河流水流的流动性能和可能形成的机械,风能资源的开发利用,以及气体控制元件的设计等。
CFD技术的研究和应用对改善工业和生活的质量起着重要作用,具有重大的经济效益。
它可以帮助工程师进行快速和准确的表征及设计,从而大大缩短研发和评估的周期,并节省大量的研发费用,从而提高产品的质量和可靠性。
例如,可以用CFD模拟来分析火力发电厂泄漏物介质的运动和湍流,从而确定阀门及其参数,进行管道设计,抑制烟气污染,提高系统效率,实现节能减排等。
此外,CFD还可以用于水工工程,海洋工程,气候变化,大气和海洋环境监测,飞机设计,汽车行业和其他工程方面的问题,有助于数字信息的可视化,预测及避免工程问题,提高效率。
因此,CFD既可以用于重要的实际问题的研究,也可以用于开发新产品,从而为工程实践提供可靠的计算技术,有效地改善系统质量和可靠性,提高经济效益。
综上所述,CFD的研究和应用具有重要的实际意义,可以显着提高工程的质量和可靠性,并带来可观的经济收益。
未来,CFD技术将逐步发展壮大,有效地改善人们的生活和工作环境。
水轮机原理与流体动力学计算基础水轮机是一种利用流体动力学原理转化水流动能为机械能的重要设备。
它在水利工程中起到了至关重要的作用。
本文将以水轮机原理与流体动力学计算基础为主题,探讨水轮机的工作原理以及流体动力学在水轮机设计中的应用。
我们来了解一下水轮机的工作原理。
水轮机利用水流的动能来驱动轮盘旋转,从而产生机械能。
在水轮机中,水从高处流下,经过导水管进入轮盘,然后在轮叶的作用下,水流的动能被转化为轮盘的旋转动能。
轮盘上的叶片采用特殊的形状和角度,可以使水流对叶片产生作用力,并将其转化为轮盘的旋转动能。
最后,旋转的轮盘通过轴传递机械能给发电机或其他设备。
水轮机的工作原理可以用流体动力学来解释。
流体动力学是研究流体运动的力学分支,它基于质量守恒定律、动量守恒定律和能量守恒定律,通过分析流体的运动状态和受力情况来研究流体动力学问题。
在水轮机设计中,流体动力学的计算是非常重要的。
通过对导水管、轮盘和叶片等流道的流场分析,可以确定水流在水轮机中的流速、压力和流量等参数。
在水轮机的设计中,流体动力学的计算是基础和关键。
首先,需要确定水轮机的叶片形状和角度。
叶片的形状和角度决定了水流对叶片的作用力大小和方向,进而影响到水轮机的效率和性能。
通过流体动力学的计算,可以优化叶片的形状和角度,使其能够最大程度地转化水流的动能为机械能。
流体动力学的计算还可以用于确定水轮机的水头和流量。
水头是水流的高度差,它决定了水轮机的输出功率。
通过流体动力学的计算,可以确定最佳的水头,以提高水轮机的效率。
流量是水流的体积流量,它决定了水轮机的出水量。
通过流体动力学的计算,可以确定最佳的流量,以满足水轮机的运行需求。
除了以上两个方面,流体动力学的计算还可以用于确定水轮机的转速和功率。
转速是指轮盘的旋转速度,它决定了水轮机的输出功率。
通过流体动力学的计算,可以确定最佳的转速,以提高水轮机的效率和性能。
水轮机原理与流体动力学计算基础是水轮机设计和优化的重要内容。
计算流体力学基础及其应用课程设计1. 课程概述本课程旨在介绍计算流体力学的基础知识和应用。
计算流体力学是研究流体运动和传热等问题的重要分支,已成为现代工程设计和科学研究中不可或缺的工具。
本课程主要内容包括流体力学基础、数值模拟方法和模拟应用等方面。
2. 课程教学目标本课程旨在培养学生掌握计算流体力学的基础知识和数值模拟方法,具有分析和解决流体力学问题的能力,能够运用计算流体力学方法进行流体问题的模拟和预测。
3. 课程教学内容3.1. 流体力学基础课程将首先介绍流体力学的基础概念、量纲和基本方程。
学生将学习流体力学的基本原理和基本方程,并理解这些方程对流体运动的描述和控制。
3.2. 数值模拟方法课程将介绍数值模拟方法,包括有限差分法、有限元法和谱方法等。
学生将了解这些方法的原理和优缺点,并学会如何进行数值模拟以解决流体问题。
3.3. 模拟应用课程将介绍计算流体力学在实际工程设计和科学研究中的应用。
学生将学会如何运用计算流体力学方法进行流体问题的模拟和预测,掌握如何利用计算流体力学解决实际问题的技能。
4. 课程教学方法本课程采用理论教学和实践操作相结合的教学方法。
理论教学主要采用课堂讲授、案例分析和在线学习等方式;实践操作主要采用仿真实验和课程设计等方式,帮助学生掌握流体力学基本概念和数值模拟方法,培养学生解决工程实际问题的能力。
5. 课程考核本课程的考核方式包括作业和课程设计两部分。
作业主要涉及理论知识和数值模拟方法的掌握程度;课程设计则要求学生结合实际工程问题,运用所学知识进行数值模拟,包括计算流体力学模拟和结果分析等。
6. 参考文献1.李克平. 计算流体力学基础和应用[J]. 数学建模与计算, 2005,8(1): 62-69.2.王豫锟. 计算流体力学基础[M]. 科学出版社, 2004.3.宋俊汝, 陈裕昌, 贾谊飞. 计算流体力学综述[J]. 强度与环境,2005, 32(1): 1-8.4.黄坚峰. 计算流体力学基础和应用[M]. 安徽科学技术出版社, 2011.7. 总结本课程主要介绍了计算流体力学的基础知识和应用,通过理论教学和实践操作相结合的方式,帮助学生掌握流体力学基本概念和数值模拟方法,并培养学生分析和解决流体问题的能力。
流体力学的数值模拟计算流体力学(CFD)的基础和局限性流体力学(Fluid Mechanics)是研究流体(包括气体和液体)运动和力学性质的学科。
数值模拟计算流体力学(Computational Fluid Dynamics,简称CFD)是利用计算机和数值计算方法对流体力学问题进行模拟和求解的一种方法。
CFD已经成为研究流体力学问题、设计和优化工程流体系统的重要工具。
本文将探讨CFD的基础原理和其在实践中的局限性。
一、CFD的基础原理1. 连续性方程和Navier-Stokes方程CFD的基础原理建立在连续性方程和Navier-Stokes方程的基础上。
连续性方程描述了流体的质量守恒,即流入和流出某一区域的质量流量必须相等。
Navier-Stokes方程则描述了流体的运动和力学性质。
它包含了质量守恒、动量守恒和能量守恒三个方程。
2. 网格划分在进行CFD计算之前,需要将流体区域划分为离散的小单元,即网格。
网格的形状和大小对数值模拟的精度和计算量有着重要的影响。
常见的网格划分方法包括结构化网格和非结构化网格。
3. 控制方程的离散化将连续性方程和Navier-Stokes方程进行离散化处理,将其转化为代数方程组,是CFD模拟的关键步骤。
常用的离散化方法包括有限差分法、有限元法和有限体积法等。
4. 数值求解方法求解离散化后的方程组是CFD计算的核心内容。
数值求解方法可以分为显式方法和隐式方法。
显式方法将未知变量推导到当前时间级,然后通过已知的变量进行计算,计算速度快但对时间步长有限制;隐式方法则将未知变量推导到下一个时间级,需要迭代求解,计算速度较慢但更稳定。
二、CFD的局限性1. 网格依赖性CFD模拟的结果在很大程度上受到网格划分的影响。
过大或过小的网格单元都会导致计算结果的不准确性。
此外,网格的形状对流场的模拟结果也有很大的影响。
如果网格不够细致,细小的涡旋等流动细节可能无法被捕捉到。
2. 数值扩散和耗散数值模拟中的离散化和近似计算会引入数值扩散和耗散。
一、计算流体力学简介1.1 计算流体力学的定义1.2 计算流体力学的研究对象1.3 计算流体力学的发展历史二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理2.1.2 有限体积法的数学模型2.2 有限体积法的数值求解2.2.1 离散化2.2.2 迭代求解三、有限体积法在计算流体力学中的应用3.1 有限体积法在流体流动模拟中的应用 3.1.1 管道流动模拟3.1.2 自由表面流动模拟3.2 有限体积法在传热问题中的应用3.2.1 对流传热3.2.2 辐射传热四、有限体积法在工程领域中的应用4.1 有限体积法在航空航天领域中的应用 4.2 有限体积法在汽车工程中的应用4.3 有限体积法在建筑工程中的应用五、有限体积法的发展趋势5.1 高性能计算技术对有限体积法的影响5.2 多物理场耦合对有限体积法的挑战5.3 人工智能在有限体积法中的应用六、结论一、计算流体力学简介1.1 计算流体力学的定义计算流体力学(Computational Fluid Dynamics, CFD)是利用计算机模拟流体力学问题的一门学科。
它通过对流动流体的数值解,来研究流体在各种情况下的运动规律和性质。
1.2 计算流体力学的研究对象计算流体力学的研究对象包括流体的流动、传热、传质、振动等现象,以及与流体相关的各种工程问题,如飞机、汽车、建筑等的气动特性分析与设计。
1.3 计算流体力学的发展历史计算流体力学的发展可以追溯到20世纪50年代,当时计算机技术的进步为流体力学问题的数值模拟提供了可能。
随着计算机硬件和软件的不断发展,CFD的应用领域不断扩大,成为现代工程领域不可或缺的工具之一。
二、有限体积法基础2.1 有限体积法的理论基础2.1.1 有限体积法的基本原理有限体积法是求解流体动力学问题的数值方法之一,它基于质量、动量和能量守恒的控制方程,将求解域离散化为有限数量的体积单元,通过对控制方程进行积分,将方程转化为代数方程组。