计算流体力学基础The+base+of+Computationa...
- 格式:pdf
- 大小:481.09 KB
- 文档页数:42
第1章流体力学与计算流体力学基础流体力学是力学的一个重要分支,它主要研究流体本身的静止状态和运动状态,以及流体和固体界壁间有相对运动时的相互作用和流动的规律,在生活、环保、科学技术及工程中具有重要的应用价值。
计算流体力学或计算流体动力学(Computational Fluid Dynamics,CFD),是用电子计算机和离散化的数值方法对流体力学问题进行数值模拟和分析的一个分支。
本章先介绍流体力学中支配流体流动的基本物理定律,然后在此基础上介绍用数值方法求解流体力学问题的基本思想,进而阐述计算流体力学的相关基础知识,最后简要介绍常用的计算流体力学商业软件。
学习目标:•学习流体力学的基础知识,包括基本概念和重要理论;•学习计算流体力学的相关理论和方法;•了解CFD软件的构成;•了解常用的商业CFD软件。
1.1 流体力学基础流体力学是连续介质力学的一个分支,是研究流体(包含气体及液体)现象以及相关力学行为的科学。
1.1.1 流体力学概述1738年,伯努利在他的专著中首次采用了水动力学这个名词并作为书名;1880年前后出现了空气动力学这个名词;1935年以后,人们概括了这两方面的知识,建立了统一的体系,统称为流体力学。
在人们的生活和生产活动中随时随地都可遇到流体,因此流体力学是与人类日常生活和生产事业密切相关的。
大气和水是最常见的两种流体,大气包围着整个地球,地球表面的70%是水面。
大气运动、海水运动(包括波浪、潮汐、中尺度涡旋、环流等)乃至地球深处熔浆的流动都是流体力学的研究内容。
20世纪初,世界上第一架飞机出现以后,飞机和其他各种飞行器得到迅速发展。
20世纪50年代开始的航天飞行,使人类的活动范围扩展到其他星球和银河系。
航空航天事业的蓬勃发展是同流体力学的分支学科——空气动力学和气体动力学的发展紧密相连的。
这些学科是流体力学中最活跃、最富有成果的领域。
石油和天然气的开采、地下水的开发利用,要求人们了解流体在多孔或缝隙介质中的运动,这是流体力学分支之一——渗流力学研究的主要对象。
一、计算流体力学的基本介绍一、什么是计算流体力学(CFD)?计算流体力学(Computational Fluid Dynamics)是流体力学的一个新兴的分支,是一个采用数值方法利用计算机来求解流体流动的控制偏微分方程组,并通过得到的流场和其它物理场来研究流体流动现象以及相关的物理或化学过程的学科。
事实上,研究流动现象就是研究流动参数如速度、压力、温度等的空间分布和时间变化,而流动现象是由一些基本的守恒方程(质量、动量、能量等)控制的,因此,通过求解这些流动控制方程,我们就可以得到流动参数在流场中的分布以及随时间的变化,这听起来似乎十分简单。
但遗憾的是,常见的流动控制方程如纳维一斯托克斯(Navier-Stokes)方程或欧拉(Euler)方程都是复杂的非线性的偏微分方程组,以解析方法求解在大多数情况下是不可能的.实际上,对于绝大多数有实际意义的流动,其控制方程的求解通常都只能采用数值方法的求解。
因此,采用CFD方法在计算机上模拟流体流动现象本质上是流动控制方程(多数情况下是纳维一斯托克斯方程或欧拉方程)的数值求解,而CFD软件本质上就是一些求解流动控制方程的计算机程序。
二、计算流体力学的控制方程计算流体力学的控剖方程就是流体流动的质量、动量和能量守恒方程。
守恒方程的常见的推导方法是基于流体微元的质量、动量和能量衡算.通过质量衡算可以得到连续性方程,通过动量守恒可以得到动量方程,通过能量衡算可以得到能量方程。
式(1)一(3)是未经任何简化的流动守恒微分方程,即纳维一斯托克斯方程(N—S方程)。
N-S方程可以表示成许多不同形式,上面的N—S方程是所谓的守恒形式,之所以称为守恒形式,是因为这种形式的N—S方程求解的变量p、pu、pv、pw、pE是守恒型的,是质量、动量和能量的守恒变量。
事实上也可以直接求解u、v、w、T等原始变量,这种形式的方程被称为非守恒形式,因为这些变量并不守恒.也可以根据具体的流动状况进行简化。
计算流体力学入门第一章基本原理和方程1.计算流体力学的基本原理1.1为什么会有计算流体力学1.2计算流体力学是一种科研工具1.3计算流体力学是一种设计工具1.4计算流体力学的冲击-其它方面的应用1.4.1汽车和发动机方面的应用1.4.2工业制造领域的应用1.4.3土木工程中的应用1.4.4环境工程中的应用1.4.5海军体形中的应用(如潜艇)在第一部分,作为本书的出发点,首先介绍计算流体力学的一些基本原理和思想,同时也导出并讨论流体力学的基本控制方程组,这些方程组是计算流体力学的物理基础,在理解和应用计算流体力学的任何一方面之前,必须完全了解控制方程组的数学形式和各项的物理意义,所有这些就是第一部分的注意内容。
1.1 为什么有计算流体力学时间:21世纪早期。
地点:世界上任何地方的一个主要机场。
事件:一架光滑美丽的飞机沿着跑道飞奔,起飞,很快就从视野中消失。
几分钟之内,飞机加速到音速。
仍然在大气层内,飞机的超音速燃烧式喷气发动机将飞机推进到了26000ft/s-轨道速度-飞行器进入地球轨道的速度。
这是不是一个充满幻想的梦?这个梦还没有实现,这是一个星际运输工具的概念,从20世纪八十年代到九十年代,已经有几个国家已经开始这方面的研制工作。
特别的,图1.1显示的是一个艺术家为NASD设计的飞行器的图纸。
美国从八十年代中期开始就进行这项精深的研究。
对航空知识了解的人都知道,象这种飞行器,这样的推进力使飞机飞的更快更高的设想总有一天会实现。
但是,只有当CFD发展到了一定程度,能够高效准确可靠的计算通过飞行器和发动机周围的三维流场的时候,这个设想才能实现,不幸的是地球上的测量装置-风洞-还不存在这种超音速飞行的飞行体系。
我们的风洞还不能同时模拟星际飞行器在飞行中所遇到的高Ma和高的流场温度。
在21世纪,也不会出现这样的风洞,因此,CFD就是设计这种飞行器的主要手段。
为了设计这种飞行器和其它方面的原因,出现了CFD-本书的主要内容。
计算流体力学原理和应用Fluid mechanics is a branch of physics and engineering that deals with the behavior of fluids (liquids, gases, and plasmas) in motionand at rest. 流体力学是物理学和工程学的一个分支,它研究流体(液体、气体和等离子体)在运动和静止时的行为。
It is a vital field in various industries such as aerospace, chemical, civil, and mechanical engineering. 在航空航天、化工、土木和机械工程等各个行业中,流体力学是一个至关重要的领域。
Understanding the principles of fluid mechanics is crucial for the design, analysis, and optimization of systems involving fluids. 理解流体力学的原理对于涉及流体的系统的设计、分析和优化至关重要。
One of the fundamental principles in fluid mechanics is conservation of mass, which states that mass cannot be created or destroyed within a system. 流体力学中的一个基本原理是质量守恒,即系统内的质量不能被创造或销毁。
This principle is expressed mathematically through the continuity equation, which relates the rate of change of mass within a control volume to the net mass flow into or out of the volume. 这一原理通过连续性方程在数学上表达,连续性方程将控制体内质量的变化率与进出体积的净质量流量相关联。
第二章--计算流体力学的基本知识第二章计算流体力学的基本知识流体流动现象大量存在于自然界及多种工程领域中,所有这些工程都受质量守恒、动量守恒和能量守恒等基本物理定律的支配。
这章将首先介绍流体动力学的发展和流体力学中几个重要守恒定律及其数学表达式,最后介绍几种常用的商业软件。
2.1计算流体力学简介2.1.1计算流体力学的发展流体力学的基本方程组非常复杂,在考虑粘性作用时更是如此,如果不靠计算机,就只能对比较简单的情形或简化后的欧拉方程或N-S方程进行计算。
20世纪30~40年代,对于复杂而又特别重要的流体力学问题,曾组织过人力用几个月甚至几年的时间做数值计算,比如圆锥做超声速飞行时周围的无粘流场就从1943年一直算到1947年。
数学的发展,计算机的不断进步,以及流体力学各种计算方法的发明,使许多原来无法用理论分析求解的复杂流体力学问题有了求得数值解的可能性,这又促进了流体力学计算方法的发展,并形成了"计算流体力学"。
从20世纪60年代起,在飞行器和其他涉及流体运动的课题中,经常采用电子计算机做数值模拟,这可以和物理实验相辅相成。
数值模拟和实验模拟相互配合,使科学技术的研究和工程设计的速度加快,并节省开支。
数值计算方法最近发展很快,其重要性与日俱增。
自然界存在着大量复杂的流动现象,随着人类认识的深入,人们开始利用流动规律来改造自然界。
最典型的例子是人类利用空气对运动中的机翼产生升力的机理发明了飞机。
航空技术的发展强烈推动了流体力学的迅速发展。
*流体运动的规律由一组控制方程描述。
计算机没有发明前,流体力学家们在对方程经过大量简化后能够得到一些线形问题解读解。
但实际的流动问题大都是复杂的强非线形问题,无法求得精确的解读解。
计算机的出现以及计算技术的迅速发展使人们直接求解控制方程组的梦想逐步得到实现,从而催生了计算流体力学这门交叉学科。
计算流体力学是一门用数值计算方法直接求解流动主控方程(Euler 或Navier-Stokes方程)以发现各种流动现象规律的学科。
第一章绪论第一节计算流体力学:概念与意义一、计算流体力学概述任何流体运动的规律都是由以下3个基本定律为基础的:1)质量守恒定律;2)牛顿第二定律(力=质量×加速度),或者与之等价的动量定理;3)能量守恒定律。
这些基本定律可由积分或者微分形式的数学方程(组)来描述。
把这些方程中的积分或者(偏)微分用离散的代数形式代替,使得积分或微分形式的方程变为代数方程(组);然后,通过电子计算机求解这些代数方程,从而得到流场在离散的时间/空间点上的数值解。
这样的学科称为计算流体(动)力学(Computational Fluid Dynamics,以下简称CFD)。
CFD有时也称流场的数值模拟,数值计算,或数值仿真。
在流体力学基本方程中的微分和积分项中包括时间/空间变量以及物理变量。
要把这些积分或者微分项用离散的代数形式代替,必须把时空变量和物理变量离散化。
空间变量的离散对应着把求解域划分为一系列的格子,称为单元体或控制体(mesh,cell,control volume)。
格子边界对应的曲线称为网格(grid),网格的交叉点称为网格点(grid point)。
对于微分型方程,离散的物理变量经常定义在网格点上。
某一个网格点上的微分运算可以近似表示为这个网格点和相邻的几个网格点上物理量和网格点坐标的代数关系(这时的数值方法称为有限差分方法)。
对于积分型方程,离散物理量可以定义在单元体的中心、边或者顶点上。
单元体上的积分运算通常表示为单元体的几何参数、物理变量以及相邻单元体中物理变量的代数关系(这时的数值方法称为有限体积方法和有限元方法)。
所谓数值解就是在这些离散点或控制体中流动物理变量的某种分布,他们对应着的流体力学方程的用数值表示的近似解。
由此可见,CFD得到的不是传统意义上的解析解,而是大量的离散数据。
这些数据对应着流体力学基本方程的近似的数值解。
对于给定的问题,CFD 研究的目的在于通过对这些数据的分析,得到问题的定量描述。
计算流体力学(Computational Fluid Dynamics)课程代码:02410028学分:2学时:32 (其中:课堂教学学时:32实验学时:0 上机学时:0 课程实践学时:0 )先修课程:微积分、线性代数、物理、流体力学等适用专业:能源与动力工程等专业教材:计算流体力学及应用;中国人民总装备部军事训练教材编辑工作委员会;国防工业出版社;2003年一、课程性质与课程目标(一)课程性质(需说明课程对人才培养方面的贡献)本课程是能源与动力工程(流体机械及工程)专业的一门主要的专业基础课。
本课程主要介绍流体力学问题的计算机数值计算方法,包括计算流体力学的数学基础、控制方程、离散化方法、有限差分法、单元与插值函数、流体力学典型问题的数值分析等。
使学生掌握计算流体力学的基础理论、方法和技能,为今后从事本专业的科学研究工作和工程技术工作打下基础。
(二)课程目标(根据课程特点和对毕业要求的贡献,确定课程目标。
应包括知识目标和能力目标。
)总目标在学习完本课程后,学生应该应掌握以下技能:(1)熟悉流动现象的微分方程和近似求解的数值方法,并且能设计数值解决方案,使用和开发流动模拟软件对工程和科学的领域中的重要流动现象进行模拟;(二)能够通过建立正确合理的数学模型,选择有效的计算方法进行流动模拟;(三)利用现有的最佳模型进行数值模拟,对模拟结果进行合理分析评价,为后续专业课的学习和将来从事科学研究和专业技术工作打下良好基础。
阶段目标.理解对于可压,不可压,粘性及无粘流体流动的基本流体力学控制方程的数学描述及数学特性。
1.对数值分析中稳定性,逼近和收敛性和代数方程组的数值解的概念和基本原则有深刻的理解。
2. 了解对于可压及不可压流体流动的数值模拟求解方法及在工程实践基础研究中的应用。
3.理解数值模拟的原理和技术,并且明白模拟的局限性。
4.通过商用CFD软件包(ANSYS或COMSOL),解决实际工程问题。
二、课程内容与教学要求(按章撰写)第一章计算流体力学的基本原理(2学时)(一)课程内容1.什么是计算流体力学.计算流体力学的工作步骤2.计算流体力学解决的问题.计算流体力学的应用领域(二)教学要求. 了解计算流体力学的相关基础知识。
计算流体力学简介计算流体力学(Computational Fluid Dynamics,简称CFD)是现代科技中的一个重要领域,它利用计算机仿真和计算等技术,对流体力学问题进行数值求解,以达到预测和优化流体现象的目的。
本文将简要介绍CFD的发展过程、应用范围、数值模拟方法等方面。
一、CFD的发展CFD的发展源于20世纪50年代,当时的计算机技术还非常有限,CFD的应用范围很窄。
到了20世纪70年代,随着计算机的高速发展和应用,CFD得以迅速发展,越来越多地应用于航空航天、能源、环境等领域。
随着CFD标准化和工具的发展,越来越多的人开始使用CFD来预测流体现象,优化产品设计。
二、CFD的应用范围CFD的应用涉及到许多领域。
在航空航天领域中,CFD 可以用来预测飞机的空气动力学特性、燃烧炉的热力学特性、火箭发动机的燃烧过程等。
在汽车工业中,CFD可以用来模拟车辆的气动特性,优化车身结构和排放系统的设计,提高燃油经济性。
在能源领域中,CFD可以用来模拟煤热电联产的燃烧过程,预测钻井液在油井中的流动和携带油气的能力等。
在环境领域中,CFD可以用来预测气象和大气污染的传播,优化建筑物的设计和施工等。
三、CFD的基本数值模拟方法CFD的数值模拟方法可以分为欧拉法和纳维-斯托克斯NS (Navier-Stokes)方程法两种。
欧拉法是通过施加边界条件和初始条件来解决流体力学问题的,简单、快速,但只适用于高速简单流动。
NS方程法是采用角动量守恒定律、质量守恒定律和动量守恒定律来分析复杂流体流动问题,更准确地预测流体动力学特性,但需要更高的计算能力和更长的计算时间。
四、CFD的软件CFD的数值求解需要大量的计算能力和高度优化的计算机软件。
目前市场上较为常用的CFD软件有Fluent、OpenFOAM、StaMINA等,这些软件通过预测流体动力学特性,优化流体现象,提高产品质量和效率。
五、CFD的应用前景CFD的应用前景十分广阔,尤其随着计算机技术的不断发展,CFD预测和优化流体现象的能力将逐渐提高。