流体力学基本概念和基础知识
- 格式:docx
- 大小:22.89 KB
- 文档页数:4
流体力学基本概念和基础知识(部分)1.什么是粘滞性?什么是牛顿内摩擦定律?不满足牛顿内摩擦定律的流体是牛顿流体还是非牛顿流体?流体内部质点间或流层间因相对运动而产生内摩擦力以反抗相对运动的性质dydu A T μ= 满足牛顿内摩擦定律的流体是牛顿流体 请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。
水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。
(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。
2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。
连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)3.什么是理想流体?不考虑黏性作用的流体,称为无黏性流体(或理想流体)4.什么是实际流体? 考虑黏性流体作用的实际流体5.什么是不可压缩流体?流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。
6.为什么流体静压强的方向必垂直作用面的内法线?流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的内法线方向7.为什么水平面必是等压面?由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。
8.什么是等压面?满足等压面的三个条件是什么?在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等压面的三个条件是同种液体连续液体静止液体。
9.什么是阿基米德原理?无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。
10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.等角速旋转运动液体的特征有那些?(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。
第一章绪论表面力:又称面积力,是毗邻流体或其它物体,作用在隔离体表面上的直接施加的接触力。
它的大小与作用面积成比例。
剪力、拉力、压力质量力:是指作用于隔离体内每一流体质点上的力,它的大小与质量成正比。
重力、惯性力流体的平衡或机械运动取决于:1.流体本身的物理性质(内因)2.作用在流体上的力(外因)流体的主要物理性质:密度:是指单位体积流体的质量。
单位:kg/m3 。
重度:指单位体积流体的重量。
单位: N/m3 。
流体的密度、重度均随压力和温度而变化。
流体的流动性:流体具有易流动性,不能维持自身的形状,即流体的形状就是容器的形状。
静止流体几乎不能抵抗任何微小的拉力和剪切力,仅能抵抗压力。
流体的粘滞性:即在运动的状态下,流体所产生的阻抗剪切变形的能力。
流体的流动性是受粘滞性制约的,流体的粘滞性越强,易流动性就越差。
任何一种流体都具有粘滞性。
牛顿通过著名的平板实验,说明了流体的粘滞性,提出了牛顿内摩擦定律。
τ=μ(du/dy)τ只与流体的性质有关,与接触面上的压力无关。
动力粘度μ:反映流体粘滞性大小的系数,单位:N•s/m2运动粘度ν:ν=μ/ρ第二章流体静力学流体静压强具有特性1.流体静压强既然是一个压应力,它的方向必然总是沿着作用面的内法线方向,即垂直于作用面,并指向作用面。
2.静止流体中任一点上流体静压强的大小与其作用面的方位无关,即同一点上各方向的静压强大小均相等。
静力学基本方程: P=Po+pgh等压面:压强相等的空间点构成的面绝对压强:以无气体分子存在的完全真空为基准起算的压强 Pabs相对压强:以当地大气压为基准起算的压强 PP=Pabs—Pa(当地大气压)真空度:绝对压强不足当地大气压的差值,即相对压强的负值 PvPv=Pa-Pabs= -P测压管水头:是单位重量液体具有的总势能基本问题:1、求流体内某点的压强值:p = p0 +γh;2、求压强差:p – p0 = γh ;3、求液位高:h = (p - p0)/γ平面上的净水总压力:潜没于液体中的任意形状平面的总静水压力P,大小等于受压面面积A与其形心点的静压强pc之积。
工程流体力学知识点总结一、工程流体力学的内容1.流体力学的基本概念工程流体力学是一门重要的工程学科,它是研究运动的流体分布特性、流动过程的动力学特征、流体受力的控制机理以及提供理论支持的工程应用理论。
它综合了物理学、数学、材料学和力学等知识,它包括流体动力学、传热传质、流体力学和流体机械等方面的研究内容。
2.流体动力学流体动力学是流体运动的力学理论,它研究的是流体中的物理量,如流速、压力、密度等的变化和流体运动的规律。
它是流体物理学的基本内容,是工程流体力学的基础理论。
它的研究内容主要包括流体的静力学、流体的流变力学、流体的流动特性、流体的热力学性质、流体的动力学和流体的流动特性等。
3.传热传质传热传质是研究流体在传热和传质的过程中热量和物质的传递机理的一门学科。
它包括流体的热传导、热对流和热辐射、物质的传质、物质输运等方面的内容。
4.流体力学流体力学是一门综合学科,是研究流体的能量、动量和位置变化的动力学特性及其应用的学科。
流体力学研究的内容包括流体的流量和压力、流体的质量和动量、流体的流速、流体的流动特性等。
它主要研究的是流体受力的特性和运动特性,是工程流体力学中最重要的学科之一。
5.流体机械的理论流体机械是研究利用流体动力驱动转子的机械装置的科学,包括机械装置的流体的传动特性、涡轮机械和泵的流量控制、流体中的变频调速以及比热容与流场等。
它是工程流体力学中的重要内容,也是工程设计的重要基础。
二、工程流体力学的应用工程流体力学的基本理论可以应用于各种工程中,如机械制造、空气动力学、海洋技术、热能技术、新能源技术、能源储存和节能技术、化工反应技术等。
它在社会经济建设中发挥着重要作用,可以为社会生产提供良好的环境保护技术手段,也可以为工程设计和技术开发提供依据。
流体力学的基本概念与原理引言:流体力学是研究流体运动规律的学科,涉及广泛且应用领域广泛。
本文将介绍流体力学的基本概念与原理,包括流体、流体静力学、流体动力学以及相关应用等方面的内容。
一、流体的基本特性流体是指能够流动的物质,主要包括液态流体和气态流体。
相较于固体,流体具有以下基本特性:1. 流动性:流体能够在物体表面滑动或流动。
2. 不可压缩性:理想流体在正常条件下几乎不可压缩,而实际流体也只在极高压力下才会发生明显的压缩。
3. 连续性:流体不存在间断,可以填充空间。
4. 流体内部分子间力的相对较小:流体分子间的相互作用力相对较弱,以致于在外力作用下,流体分子会相对较快地改变位置。
二、流体静力学流体静力学研究的是处于静止状态的流体,主要涉及以下概念与原理:1. 压强:压强是流体对单位面积上的压力。
根据帕斯卡原理,流体中的压强在各个方向上都是相等的。
2. 大气压:大气压是指大气对物体单位面积上的压力,通常用标准大气压作为基准。
3. 浮力:根据阿基米德原理,浸在液体中的物体会受到一个向上的浮力,其大小等于物体排斥液体的重量。
4. 斯托克斯定律:斯托克斯定律描述了粘性流体中小球的受力情况,根据该定律,小球的阻力与小球半径、流体黏度以及小球速度有关。
三、流体动力学流体动力学研究的是流体在运动过程中的行为,主要涉及以下概念与原理:1. 流速与流量:流速是单位时间内通过某个截面的流体体积,流量是单位时间内通过某个截面的流体质量或体积。
2. 流体动能:流体动能是流体由于运动而具有的能量,与流体的质量和速度有关。
3. 费诺特定律:费诺特定律是描述粘性流体内摩擦力与流速梯度之间关系的定律,根据该定律,粘性流体内部存在着滑动摩擦和黏滞摩擦。
4. 贝努利定律:贝努利定律描述了在不可压缩、稳定流动的流体中,沿着流线速度增大的地方,压强会减小;反之,速度减小的地方,压强会增大。
四、流体力学的应用流体力学的研究内容和应用广泛,常见的应用领域包括但不限于:1. 水力学:研究水的流动、水耗等问题,广泛应用于水利工程、水电站等领域。
流体力学基础概念与定义流体力学是研究流体运动及其相关现象的科学领域,是力学的一个分支学科。
它以流体力学基础概念与定义为研究对象,包括流体、流速、密度、压力、流量等方面。
本文将重点介绍流体力学的基础概念与定义,以帮助读者更好地理解和应用流体力学知识。
第一部分:流体力学概述一、流体的定义流体是指能够流动的物质,包括液体和气体。
与固体相比,流体的分子之间的相互作用较弱,容易发生流动。
二、流体运动的描述流体运动包括径流和湍流,径流是指流体在光滑表面上的顺畅流动,湍流是指流体在粗糙表面上的混沌不规则流动。
三、重要性及应用领域流体力学在众多领域中都具有广泛的应用,例如工程领域的水力学、气动学、船舶设计等,医学领域的血液循环学等。
第二部分:流体力学基本量和概念一、流速流速是指单位时间内流体通过某一横截面积的体积。
它可以用于描述流体运动的快慢。
二、密度密度是指单位体积内流体所含的质量。
它与流体的压力和温度有关,可以用于描述流体的致密程度。
三、压力压力是指单位面积上施加的力。
流体中的压力可以通过定义流体的垂直压强来表示,是流体力学中的重要概念。
四、流量流量是指单位时间内通过某一横截面积的流体体积。
它可以用于描述流体运动的量。
第三部分:流体力学方程一、连续性方程连续性方程描述了流体在流动过程中质量守恒的原理,即在稳态条件下,流体在任何两个截面的流量相等。
二、动量方程动量方程描述了流体运动中的力学变化,它可以通过流体中的压力和流速的关系来表达。
三、能量方程能量方程描述了流体运动中能量守恒的原理,考虑了流体在运动中与外界的能量交换。
第四部分:流体力学的应用实例一、水流的行为通过分析水流的流速、流量和压力变化,可以更好地了解水力学,应用于水坝设计、水源利用等领域。
二、空气动力学空气动力学研究空气在运动中的力学行为,可以应用于飞机设计、汽车流体力学等领域。
三、血液循环学血液循环学研究血液在人体中的流动和压力变化,对于心血管疾病的治疗和预防具有重要意义。
大学物理流体力学基础知识点梳理一、流体的基本概念流体是指能够流动的物质,包括液体和气体。
与固体相比,流体具有易变形、易流动的特点。
流体的主要物理性质包括密度、压强和黏性。
密度是指单位体积流体的质量,用ρ表示。
对于均质流体,密度等于质量除以体积;对于非均质流体,密度是空间位置的函数。
压强是指流体单位面积上所受的压力,通常用 p 表示。
在静止流体中,压强的大小只与深度和流体的密度有关,遵循着著名的帕斯卡定律。
黏性是流体内部抵抗相对运动的一种性质。
黏性的存在使得流体在流动时会产生内摩擦力,阻碍流体的流动。
二、流体静力学流体静力学主要研究静止流体的力学规律。
(一)静止流体中的压强分布在静止的均质流体中,压强随深度呈线性增加,其关系式为 p =p₀+ρgh,其中 p₀为液面处的压强,h 为深度,g 为重力加速度。
(二)浮力定律当物体浸没在流体中时,会受到向上的浮力。
浮力的大小等于物体排开流体的重量,即 F 浮=ρgV 排,这就是阿基米德原理。
三、流体动力学(一)连续性方程连续性方程是描述流体在流动过程中质量守恒的定律。
对于不可压缩流体,在稳定流动时,通过管道各截面的质量流量相等,即ρv₁A₁=ρv₂A₂,其中 v 表示流速,A 表示横截面积。
(二)伯努利方程伯努利方程反映了流体在流动过程中能量守恒的关系。
其表达式为p +1/2ρv² +ρgh =常量。
即在同一流线上,压强、动能和势能之和保持不变。
伯努利方程有着广泛的应用。
例如,在喷雾器中,通过减小管径增加流速,从而降低压强,使得液体被吸上来并雾化;在飞机机翼的设计中,利用上下表面流速的差异产生压强差,从而提供升力。
四、黏性流体的流动(一)层流与湍流当流体流速较小时,流体呈现出有规则的层状流动,称为层流;当流速超过一定值时,流体的流动变得紊乱无序,称为湍流。
(二)黏性流体的流动阻力黏性流体在管道中流动时会受到阻力。
阻力的大小与流体的黏度、流速、管道的长度和直径等因素有关。
流体力学相关知识点流体力学是一门研究流体(液体和气体)的力学行为的学科。
以下是流体力学中的一些基本概念和知识点:1. 牛顿粘性定律:流体力学中的内摩擦力或粘性力,与相对速度梯度和接触面面积成正比,与流体的物理属性(粘度)有关。
2. 伯努利定理:在不可压缩、无粘性的理想流体中,流体的总能量(动能+势能)沿流线保持不变。
3. 斯托克斯定理:在重力和表面张力作用下的粘性流体,如果流动是小扰动引起的,则流线是围绕封闭曲线的闭合曲线。
4. 泊肃叶定律:在一定条件下,粘性流体在管道中流动时,其流量Q与管道半径r,流体粘度μ及管道长度L成正比,与压强差ΔP成正比。
5. 库塔流定理:在二维不可压缩、无粘性的理想流体中,如果存在一个封闭的不可穿透的曲线(库塔流线),则在该曲线所包围的区域内,存在一个与之相对应的稳定流体运动。
6. 欧拉方程:描述了流体运动的动量变化率等于外力(体积力与表面力之和)对该流体微元的作用。
7. 雷诺方程:描述了粘性流体在管内层流时,其动量方程如何受到粘性的影响。
8. 纳维-斯托克斯方程:描述了考虑粘性效应的流体运动的动量、能量和组分变化等基本方程。
9. 普朗特边界层方程:描述了流体在物体表面附近形成边界层后,边界层的动量、能量和组分变化等基本方程。
10. 流体静力学:研究流体静止时的平衡状态及对固体壁面的压力和作用力。
11. 流体动力学:研究流体运动的基本规律,包括速度场、压力场、温度场等。
12. 湍流理论:研究湍流的形成、发展和衰减机理,建立湍流模型并求解湍流运动的基本方程。
13. 流动稳定性理论:研究流体运动的稳定性问题,分析流体微小扰动的发展和演化过程。
14. 计算流体力学:通过数值方法求解流体力学的基本方程,模拟和分析流体运动的规律和特性。
以上是流体力学中的一些基本概念和知识点,它们是理解和解决实际工程问题的基础。
⼤学物理学习指导第2章流体⼒学基础第2章流体⼒学基础2.1 内容提要(⼀)基本概念 1.流体:由许多彼此能够相对运动的流体元(物质微团)所组成的连续介质,具有流动性,常被称为流体。
流体是液体和⽓体的总称。
2.流体元:微团或流体质量元,它是由⼤量分⼦组成的集合体。
从宏观上看,流体质量元⾜够⼩,⼩到仅是⼀个⼏何点,只有这样才能确定流体中某点的某个物理量的⼤⼩;从微观上看,流体质量元⼜⾜够⼤,⼤到包含相当多的分⼦数,使描述流体元的宏观物理量有确定的值,⽽不受分⼦微观运动的影响。
因此,流体元具有微观⼤,宏观⼩的特点。
3.理想流体:指绝对不可压缩、完全没有黏滞性的流体。
它是实际流体的理想化模型。
4.定常流动:指流体的流动状态不随时间发⽣变化的流动。
流体做定常流动时,流体中各流体元在流经空间任⼀点的流速不随时间发⽣变化,但各点的流速可以不同。
5.流线:是分布在流体流经区域中的许多假想的曲线,曲线上每⼀点的切线⽅向和该点流体元的速度⽅向⼀致。
流线不可相交,且流速⼤的地⽅流线密,反之则稀。
6.流管:由⼀束流线围成的管状区域称为流管。
对于定常流动,流体只在管内流动。
流线是流管截⾯积为零的极限状态。
(⼆)两个基本原理 1.连续性原理:理想流体在同⼀细流管内,任意两个垂直于该流管的截⾯S 1、S 2,流速v 1、v 2,密度ρ1、ρ2,则有111211v v S S ρρ= (2.1a )它表明,在定常流动中,同⼀细流管任⼀截⾯处的质量密度、流速和截⾯⾯积的乘积是⼀个常数。
也叫质量守恒⽅程。
若ρ为常量,则有Q = S v = 常量(2.1b )它表明,对于理想流体的定常流动,同⼀细流管中任⼀截⾯处的流速与截⾯⾯积的乘积是⼀个常量。
也叫体积流量守恒定律或连续性⽅程。
2 伯努利⽅程:理想流体在同⼀细流管中任意两个截⾯处其截⾯积S ,流速v ,⾼度h ,压强p 之间有11222121gh p gh p ρρρρ++=++2122v v (2.2) 或写成常量=++gh p ρρ221v 。
流体力学基本概念和基础知识
流体力学基本概念和基础知识(部分)
1.什么是粘滞性?什么是牛顿摩擦定律?不满足牛顿摩擦定律的流体是牛顿流体还是非牛顿流体?
流体部质点间或流层间因相对运动而产生摩擦力以反抗相对运动的性质
dy
du A T μ= 满足牛顿摩擦定律的流体是牛顿流体请阐述液体、气体的动力粘滞系数随着温度、压强的变化规律。
水的黏滞性随温度升高而减小;空气的黏滞性随温度的升高而增大。
(动力粘度μ体现黏滞性)通常的压强对流体的黏滞性影响不大,但在高压作用下,气液的动力黏度随压强的升高而增大。
2.在流体力学当中,三个主要的力学模型是指哪三个?并对其进行说明。
连续介质(对流体物质结构的简化)、无黏性流体(对流体物理性质的简化)、不可压流体(对流体物理性质的简化)
3.什么是理想流体?
不考虑黏性作用的流体,称为无黏性流体(或理想流体)
4.什么是实际流体?考虑黏性流体作用的实际流体
5.什么是不可压缩流体?
流体在流动过程中,其密度变化可以忽略的流动,称为不可压缩流动。
6.为什么流体静压强的方向必垂直作用面的法线?
流体在静止时不能承受拉力和切力,所以流体静压强的方向必然是沿着作用面的法线方向
7.为什么水平面必是等压面?
由于深度相等的点,压强也相同,这些深度相同的点所组成的平面是一个水平面,可见水平面是压强处处相等的面,即水平面必是等压面。
8.什么是等压面?满足等压面的三个条件是什么?
在同一种液体中,如果各处的压强均相等由各压强相等的点组成的面称为等压面。
满足等压面的三个条件是同种液体连续液体静止液体。
9.什么是阿基米德原理?
无论是潜体或浮体的压力体均为物体浸入液体的体积,也就是物体排开液体的体积。
10.潜体或浮体在重力G和浮力P的作用,会出现哪三种情况?
重力大于浮力,物体下沉至底。
重力等于浮力,物体在任一水深维持平衡。
重力小于浮力,物体浮出液体表面,直至液体下部分所排开的液体重量等于物体重量为止。
11.等角速旋转运动液体的特征有那些?
(1)等压面是绕铅直轴旋转的抛物面簇;(2)在同一水平面上的轴心压强最低,边缘压强最高。
12.什么是绝对压强和相对压强?两者之间有何关系?通常提到的压强是指绝对压强还是相对压强?1个标准大气压值以帕(Pa)、米水柱(mH2O)、毫米水银柱(mmHg)表示,其值各为多少?
绝对压强:以毫无一点气体存在的绝对真空为零点起算的压强。
相对压强:当地同高程的大气压强ap为零点起算的压强。
压力表的度数是相对压强,通常说的也是相对压强。
1atm=101325pa=10.33mH2O=760mmHg.
13.什么叫自由表面?和大气相通的表面叫自由表面。
14.什么是流线?什么是迹线?流线与迹线的区别是什么?
流线是某一瞬时在流场中画出的一条空间曲线,此瞬时在曲线上任一点的切线方向与该点的速度方向重合,这条曲线叫流线。
区别:迹线是流场中流体质点在一段时间过程中所走过的轨迹线。
流线是由无究多个质点组成的,它是表示这无究多个流
体质点在某一固定瞬间运动方向的曲线。
而迹线则是在时间过程中表示同一流体质点运动的曲线。
15.什么是流场?我们把流体流动占据的空间称为流场
16.什么是欧拉法?什么是拉格朗日法?
欧拉法:通过描述物理量在空间的分布来研究流体运动的方法。
拉格朗日法:通过描述每一质点的运动达到了解流体运动的方法。
17.什么是恒定流动?什么是非恒定流动?什么是均匀流?什么是非均匀流?什么是急变流?什么是渐变流?
运动平衡的流动,各点流速不随时间变化,由流速决定的压强、粘性力也不随时间变化,这种流动称之为恒定流动反之为非恒定流动。
质点流速的大小和方向均不变的流动叫均匀流动,反之为非均匀流动。
不均匀流动又按流速随流向变化的缓急,分为渐变流和急变流
18.应用恒定总统能量方程时,为什么把过流断面选在渐变流段或均匀流段?
19.因为建立恒定总流的伯努利方程时,把(z+P/pg)作为常熟提到积分号外面,只有渐变流断面或均匀流断面的(Z+P/pg)=C。
19.在写总流能量方程时,过流断面上的代表点、基准面是否可以任意选取?为什么?
可以,因为渐变流断面或均匀流断面上(Z+P/pg)=C
20.动能修正系数?动量修正系数?二者的大小和速度分布有何关系?
动能修正系数:总流有效断面上的实际动能对按平均流速算出假象动能的比值,流速分布越不均匀,值越大。
动量修正系数:实际动量和按照平均流速计算的动量的比值,流速分布越不均匀,值越大。
21.什么是沿程损失?什么是局部损失?紊流流态下,管沿程阻力系数的变化规律?
在沿程不变的管段上,流动阻力沿程也基本不变,称这类阻力为沿程阻力,克服沿程阻力引起的能量损失为沿程损失。
在边壁急剧变化的区域,阻力主要地集中在该
区域中及其附近,这种集中分布的阻力称为局部阻力。
克服局部阻力的能量损失为局部损失。
紊流光滑区(Re ≥4000)(Re)f =λ
22.雷诺实验揭示了流体存在两种流态,它们是如何定义的?判别流态的准则是什么?并阐述其物理意义。
对有压圆管流,判别准则的临界值为多少?
层流:各液层间毫不相混,分层有规则的流动状态。
紊流:液体质点的运动轨迹是极不规则的,各部分流体相互剧烈掺混。
用临界雷诺数作为判断准则,圆管流临界雷诺数等于2000
23.圆管层流流速分布规律?切应力的分布规律?
)(420r r J u -=μ
γ γ——容重;J ——水力坡度;μ——动力黏度;0r ——管半径J R g '=ρτ R '——对应的水力半径
24.尼古拉兹实验中,沿程阻力系数的变化曲线分为哪几个区域?请分别阐述其变化规律?湍流三个不同流区沿程阻力系数的影响因素以及形成不同流区的根本原因。
层流区;层,紊流过渡区;紊流光滑区;紊流过渡区;紊流粗糙区
25.相同的水力条件下,孔口自由出流的流量与管嘴出流的流量相比较,哪一个大?为什么会产生这种现象?管嘴正常工作的条件是什么?
在相同条件下,管嘴的过流能力是孔口的1.32倍。
收缩断面处真空起的作用。
圆柱形外管嘴的正常工作条件:作用水头H0≤9.3m,管嘴长度l=(3~4)d.
26.什么叫孔口自由出流和淹没出流?
在容器侧壁或底壁上开一孔口,容器中的液体自孔口出流到大气中,称为孔口自由出流。
如出流到充满液体的空间,则称为淹没出流。