小学奥数之各种循环小数化成分数的方法归纳
- 格式:doc
- 大小:13.00 KB
- 文档页数:1
把无限循环小数化成分数的方法如何将无限循环小数化成分数无限循环小数是指小数部分存在一个或多个重复的数字组合,无限重复下去的小数。
例如,0.3333...就是一个无限循环小数,因为小数部分的3无限重复下去。
将无限循环小数化成分数是一种常见的数学运算,可以使得无限循环小数变成一个有限的数值。
下面将介绍几种方法来实现这个转换。
方法一:设x为无限循环小数,将x乘以一个适当的倍数,使得小数点后的循环部分移到整数部分,然后用等式表示这个乘法,解方程求解x的值。
例如,将0.3333...乘以10,得到3.3333...。
然后用等式表示这个乘法:10x = 3.3333...。
接着,将等式两边减去原来的等式,得到9x = 3。
解这个方程,得到x = 1/3。
方法二:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。
然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。
接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。
再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。
解这个方程,得到x = y/(10^n - 1)。
例如,将0.3333...的循环部分移到整数部分后,得到3。
然后用等式表示这个移位操作:0.3333... = 3 + 1/10^1。
接着,将等式两边乘以10,得到10*0.3333... = 10*3 + 1。
再将等式两边减去原来的等式,得到9*0.3333... = 3。
解这个方程,得到0.3333... = 3/9 = 1/3。
方法三:设x为无限循环小数,将x的循环部分移到整数部分后,设为y。
然后用等式表示这个移位操作,得到x = y + 1/10^n,其中n为循环部分的长度。
接着,将等式两边乘以10^n,得到10^n*x = 10^n*y + 1。
再将等式两边减去原来的等式,得到(10^n - 1)x = 10^n*y。
奥数循环小数与分数转化规律循环小数与分数循环小数有关概念:循环节从小数部分第一位开始的循环小数,称为纯循环小数。
如0.3333330.142514251,循环节不是从小数部分第一位开始的,叫混循环小数。
如0.12222,13.098434343分数转化成循环小数的判断方法:1:有限小数:分母的质因数中只有2与5(10,25·····)2:纯循环小数:分母的质因数中没有因数2与5(33,11,····)把纯循环小数的小数部分化成分数的规则纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
公式:0. a =a ab 0. a b =9,99,3:混循环小数:分母的质因数中不仅只有2与5,还有其因数,不循环的位数等于b 中质因数2与5较多的个数。
把混循环小数的小数部分化成分数的规则混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
0.0a b =ab 1ab abc -a⨯=0. abc =9910990,990例1、将下面循环小数化为分数①0.3 ②0.189 ③7.1631 ④9.2535a例2、真分数7化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a 是多少?例3、某学生将1.23乘以一个数a 时,把1.23误看成1.23,使乘积比正确结果减少0.3。
则正确结果应该是多少?例4、计算:0.1+0.125+0.3+0.16,结果保留三位小数。
例5、计算:0.01+0.12+0.23+0.34+0.78+0.89例6、将循环小数0.027与0.179672相乘,取近似值,要求保留100位小数,那么该近似值的最后一位小数是多少?20021例7、2019和287化成循环小数后,第100位上的数字之和是________。
各种循环小数化成分数得方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环得小数叫做纯循环小数。
怎样把它化为分数呢?瞧下面例题。
例1把纯循环小数化分数:
从以上例题可以瞧出,纯循环小数得小数部分可以化成分数,这个分数得分子就是一个循环节表示得数,分母各位上得数都就是9。
9得个数与循环节得位数相同。
能约分得要约分。
ﻬ二、混循环小数化分数
不就是从小数点后第一位就循环得小数叫混循环小数。
怎样把混循环小数化为分数呢?瞧下面得例题。
例2 把混循环小数化分数。
(2)先瞧小数部分0、353
由以上例题可以瞧出,一个混循环小数得小数部分可以化成分数,这个分数得分子就是第二个循环节以前得小数部分组成得数与小数部分中不循环部分组成得数得差。
分母得头几位数就是9,末几位就是0。
9得个数与循环节中得位数相同,0得个数与不循环部分得位数相同。
三、循环小数得四则运算
循环小数化成分数后,循环小数得四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数得四则运算与有限小数四则运算一样,也就是分数得四则运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1、25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律与等差数列求与公式计算。
循环小数化分数妙招循环小数化分数有两个公式,大家比较熟悉,第一个比较好记,但第二个容易弄错(一)纯循环小数化分数0.abc(abc循环)=(abc/999),可以约分的再约分。
举例如下:0.3(3循环) = 3/9 = 1/3;0.45(45循环) = 45/99 = 5/11;6.789(789循环) = 6又789/999 = 6又263/333。
(二)混循环小数化分数0.abc(bc循环)=(abc-a)/990,可以约分的再约分。
举例如下:0.12(2循环) = (12-1)/90 = 11/900.23456(456循环) = (23456-23)/99900 = 23433/99900 = 7811/33300;其实这些都可以用一元一次方程方程来解决.纯循环小数化分数设① x=0.45(45循环)两边同时乘以100得到② 100x = 45.45(45循环)下面消去循环节用②-①得到99x = 45,解得x = 45/99 =5/9混循环小数化分数设① x=0.23456(456循环)两边同时乘以1000得到②1000x = 234.56456(456循环)下面消去循环节用②-①得到999x = 234.33,解得x = 23433/99900 = 7811/33300我们可以把这个数乘以10ⁿ后(这个n就是循环节的长度),相减消掉循环节,之后就化成了分数,最后化简即可。
分数化小数的判断因为我们现在用的是十进制,10=2×5,10ⁿ只能分解出2和5,所以10ⁿ不能被2和5以外的质数整除。
所以有以下的结论。
一个最简分数,①如果分母中除了2和5以外,不含其他的质因数,这个分数就能化有限小数;②如果分母中只含有2和5以外的质因数,这个分数就能化成纯循环小数。
③如果分母中只既含有2或5,又含有2和5以外的质因数,这个分数就能化成混循环小数。
利用这三个结论可以迅速判断(分母大的需要分解质因数)例如:1/2,1/5,1/10,1/25 等是有限小数1/3,1/7,1/21 等是纯循环小数1/6,1/35,1/75 等是混循环小数。
如何快速将各类循环小数转化成分数
环小数化分数技巧
1、纯循环小数
取其中一个循环节的数字作为分子,分母由1个或若干个9组成,9的个数等于一个循环节里的数字个数(位数)。
0.565656.....=56/99
0.666666.....=6/9
0.325325.....=325/999
2、混循环小数
分子是前面不循环的数字连接一个循环节数字减去不循环数字的差的组合。
分母由9..和0..组成,9的个数等于一个循环节里的位数,0的个数等于不循环的位数。
0.6323232....=626/990
0.21636363...=2142/9900
0.32868686...=3254/9900
3、带循环小数
整数部分放在带分数的右边整数位置。
其余与纯循环小数相同。
5.235235...=5+235/999
6.262626....=6+26/99
12.6363...=12+63/99
4 ,带混循环小数
整数部分放在带分数的右边整数位置。
其余与混循环小数相同。
3.56868..=3+563/990
6.35959..=6+356/990
16.28989..=16+287/990。
各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
(2)先看小数部分0.353
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
无限循环小数如何化为分数汇总无限循环小数如何化为分数由于小数部分位数是无限的,所以不可能写成十分之几、百分之几、千分之几……的数。
转化需要先“去掉”无限循环小数的“无限小数部分”。
一般是用扩倍的方法,把无限循环小数扩大十倍、一百倍或一千倍……使扩大后的无限循环小数与原无限循环小数的“无限小数部分”完全相同,然后这两个数相减,这样“大尾巴”就剪掉了。
方法一:(代数法)类型1:纯循环小数如何化为分数例题:如何把0.33……和0.4747…… 化成分数例1:0.33……×10=3.33……0.33……×10-0.33……=3.33……-0.33……(10-1) ×0.33……=3即9×0.33……=3那么0.33……=3/9=1/3例2:0.4747……×100=47.4747……0.4747……×100-0.4747……=47.4747……-0.4747……(100-1)×0.4747……=47即99×0.4747……=47那么0.4747……=47/9由此可见, 纯循环小数化为分数,它的小数部分可以写成这样的分数:纯循环小数的循环节最少位数是几,分母就是由几个9组成的数;分子是纯循环小数中一个循环节组成的数。
练习:(1)0.3……=3/(10-1)=1/3(2)0.31 31……=31/(100-1)=31/99。
(3)0.312 312……=类型2:混循环小数如何化为分数例题:把0.4777……和0.325656……化成分数例3:0.4777……×10=4.777……①0.4777……×100=47.77……②用②-①即得:0.4777……×90=47-4所以:0.4777……=43/90例4:0.325656……×100=32.5656……①0.325656……×10000=3256.56……②用②-①即得:0.325656……×9900=3256.5656……-32.5656……0.325656……×9900=3256-32所以:0.325656……=3224/9900练习:(1)0.366……=(2)1.25858……=(3)6.23898989……=可见,无限循环小数是有理数,是有理数就可以化成分数。
各种循环小数化成分数的方法归纳、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢? 看下面例题。
例1把纯循环小数化分数:(1)就 (2)2.102解:CD 0.6X^0 = 6.666……①0 6 = 0.666……②由①一②得0 5X9 = 6*62所以0:6 = # =彳Q )話矗先看小数W0.1020.102 x 1000 = 102.102102 ........ ①4 4-0;J02 = 0;;m2102……②由①一②得0.10 2 X 999^102从以上例题可以看出,纯循环小数的小数部分可以化成分数, 这个分数的分子是一个循环节表示的数,分母各位上的数都是 9。
9的个数与循环节的位数相 同。
能约分的要约分。
999所以0.102 =102 543102 = 3102 999 959、混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数 分数呢?看下面的例题。
例2把混循环小数化分数。
C1) 0.215( ⑵ 6.353W= CO 0.215X1000 = 215.1515……①0.215X10 = 2/1515•—②由①一②得0215X 990= 215-2** 215-2 21371°-215 = ^F =990 = 330 (2) 先看小数部分0.353 由①一②^=0 353X900 = 353^35*353-35 318 °353= 500 f 53 150所以6.总-6号;汽310 =6 3 900 ^00 150由以上例题可以看出,一个混循环小数的小数部分可以化成分数, 这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成 的数的差。
分母的头几位数是 9,末几位是0。
9的个数与循环节中的位数相同, 0的个数与不循环部分的位数相同。
如:CD 把0.27分数。
怎样把混循环小数化为 解’ 7.42 = 7 276-27?00 S3 30042 4 90-三、循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
各种循环小数化成分数的方法归纳(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(各种循环小数化成分数的方法归纳(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为各种循环小数化成分数的方法归纳(word版可编辑修改)的全部内容。
各种循环小数化成分数的方法归纳一、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题.例1把纯循环小数化分数:从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9.9的个数与循环节的位数相同.能约分的要约分。
二、混循环小数化分数不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数.(2)先看小数部分0.353由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0.9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:解:先把循环小数化成分数后再计算。
例4 计算下面各题.分析与解:(1)把循环小数化成分数,再按分数计算.(2)可根据乘法分配律把1.25提出,再计算.(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算.。
循环小数化分数公式
1. 纯循环小数化分数。
- 公式:将纯循环小数化为分数时,分子是一个循环节组成的数;分母的各位数字都是9,9的个数与循环节的位数相同。
- 例如:把0.3̇化为分数。
- 这里循环节是3,按照公式,分子就是3,因为循环节是1位数字,分母就是9。
所以0.3̇=(3)/(9)=(1)/(3)。
- 再如0.2̇5。
- 循环节是25,分子就是25,循环节是2位数字,分母就是99,所以
0.2̇5=(25)/(99)。
2. 混循环小数化分数。
- 公式:分子是小数点后面第一个循环节前面的数字组成的数与不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的位数相同,0的个数跟不循环部分的位数相同。
- 例如:把0.23̇化为分数。
- 不循环部分是2,循环节是3。
分子为(23 - 2)=21,分母中9的个数与循环节位数相同(1个9),0的个数与不循环部分位数相同(1个0),所以分母是90。
则0.23̇=(21)/(90)=(7)/(30)。
- 又如0.123̇4。
- 不循环部分是12,循环节是34。
分子为(1234 - 12)=1222,分母中9的个数与循环节位数相同(2个9),0的个数与不循环部分位数相同(2个0),所以分母是9900,则0.123̇4=(1222)/(9900)=(611)/(4950)。
各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数局部可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数一样。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
由以上例题可以看出,一个混循环小数的小数局部可以化成分数,这个分数的分子是第二个循环节以前的小数局部组成的数与小数局部中不循环局部组成
的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数一样,0的个数与不循环局部的位数一样。
三、循环小数的四那么运算
循环小数化成分数后,循环小数的四那么运算就可以按分数四那么运算法那么进展。
从这种意义上来讲,循环小数的四那么运算和有限小数四那么运算一样,也是分数的四那么运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:〔1〕把循环小数化成分数,再按分数计算。
〔2〕可根据乘法分配律把1.25提出,再计算。
〔3〕把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。
小学奥数:“循环小数与分数互化”知识总结与例题(含答案)小学奥数:“循环小数与分数互化”知识总结与例题(含答案)一、小数的基本知识小数可以分为有限小数和无限小数两部分;无限小数又分为无限不循环小数和循环小数两部分,而循环小数又可以分为纯循环小数和混循环小数。
1.有限小数的判定:分母的质因式中只有2和5的数。
2.循环节:一个循环小数的小数部分,依次不断重复出现的数字,叫做这个循环小数的循环节。
3.循环小数的定义:一个小数,从小数部分的某一位起,一个数字或几个数字,依次不断地重复出现。
4.纯循环小数:循环节从小数部分第一位开始的。
纯循环小数的判定:分母的质因式中不含2和5的,化成小数后为纯循环小数。
5.混循环小数:循环节不是从小数部分第一位开始的。
混循环小数的判定:分母的质因式不全含2和5的,化为小数后为混循环小数。
二、循环小数与分数的转化1.错位相减法与循环小数转化为分数⑴以0.1为例,令a =0.1,①,而=1.110a ②,由②-①可以得到,a =91,则=19a 。
==1240.129933;==123410.123999333;=12340.12349999⑵以0.1234为例,推导==1234-126110.123499004950。
设A =0.1234,将等式两边都乘以100,得:A =10012.34;再将原等式两边都乘以10000,得:A =100001234.34;两式相减得:-=-10000100123412A A ,所以A ==1234-1261199004950。
2.方法归纳⑴纯循环小数化成分数,分子是一个循环节的数字组成的数,分母是由数字9组成的,9的个数和一个循环节的数字的个数相同。
⑵混循环小数化成分数,分子是小数点后面第一个数字到第一个循环节的末位数字所组成的数,减去小数部分不循环数字组成的数所得的差;分母的头几位数字是9,末几位数字是0,9的个数同循环节的位数相同,0的个数同不循环部分的位数相同。
循环小数化分数
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
例2 把混循环小数化分数。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:
例4 计算下面各题。
循环小数化成分数的方法
小数化成分数的方法可以概括为:
一、等比分数比率平方根:
1、将此小数转换成立方根形式;
2、平方根分数比率下令反深次元素。
3、识别数据完成后,将比率中的小数分数化成分数;
二、因式分解:
1、识别比率,将小数分解式因式分解;
2、简化比率,将小数继续分解式因式分解;
3、完成后将比率中的小数分数化成分数;
三、分数共形:
1、从分母开始变换,将分母转换成一个共形数;
2、从分子开始变换,将分子转换成一个共形数;
3、完成后将比率中的小数分数化成分数。
四、直接分数化:
1、将3位以内的小数直接分数化,如“0.75”直接化成“3/4”;
2、将4位以内的小数分数转换,如“0.625”转换成“5/8”;
3、完成后将比率中的小数分数化成分数。
小学奥数之各种循环小数化成分数的方法归纳小学奥数中,常常会遇到各种循环小数,化成分数的问题。
循环小数是指小数部分有一组数字无限重复出现。
对于循环小数,我们可以采用一些方法将其化成分数。
下面我们将介绍几种常见的方法。
方法一:直接法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:10x = abc.abcabcabc...x = 0.abcabcabc...将上述两式相减,得到:9x = abc所以,x = abc / 9这就是将循环小数直接化成分数的方法。
解:设这个循环小数为x,则有:将上述两式相减,得到:99x=36所以,x=36/99=4/11方法二:倍数法对于循环小数0.abcabcabc...,我们可以设这个循环小数为x,则有:1000x = abc.abcabcabc...100x = 0.abcabcabc...将两式相减,得到:900x = abc所以,x = abc / 900这就是利用倍数法将循环小数化成分数的方法。
解:设这个循环小数为x,则有:将两式相减,得到:900x=571所以,x=571/900=19/30方法三:代数法对于循环小数0.abcabcabc...,我们可以利用代数方法将其化成分数。
设这个循环小数为x,则有:x = 0.abcabcabc...10x = abc.abcabcabc...将两式相减,得到:9x = abc所以,x = abc / 9这种方法和直接法类似,但更侧重于利用代数思想。
例题3:将0.8888...化成分数。
解:设这个循环小数为x,则有:10x=8.8888...x=0.8888...将两式相减,得到:9x=8所以,x=8/9除了以上的三种常见方法,还有一些特殊的循环小数化成分数的方法,根据具体情况灵活运用。
总结起来,小学奥数中循环小数化成分数常用的方法有直接法、倍数法和代数法。
学生们在解决这类问题时,可以根据题目的具体形式选择合适的方法。
各种循环小数化成分数的方法归纳一、纯循环小数化分数从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:分析与解(1)把循环小数化为分数再按分数计算(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
例4 计算下面各题:解:先把循环小数化为分数后再计算四、一个最简分数化为小数有三种情况:(1)如果分母只含有质因数2和5,那么这个分数一定能化成有限小数,并且小数部分的位数等于分母中质因数2与5中个数较多的那个数的个数;(2)如果分母中只含有2与5以外的质因数,那么这个分数一定能化成纯循环小数;(3)如果分母中既含有质因数2或5,又含有2与5以外的质因数,那么这个分数一定能化成混循环小数,并且不循环部分的位数等于分母中质因数2与5中个数较多的那个数的个数。
文档收集于互联网,已重新整理排版.word版本可编辑.欢迎下载支持.
各种循环小数化成分数的方法归纳
一、纯循环小数化分数
从小数点后面第一位就循环的小数叫做纯循环小数。
怎样把它化为分数呢?看下面例题。
例1把纯循环小数化分数:
从以上例题可以看出,纯循环小数的小数部分可以化成分数,这个分数的分子是一个循环节表示的数,分母各位上的数都是9。
9的个数与循环节的位数相同。
能约分的要约分。
二、混循环小数化分数
不是从小数点后第一位就循环的小数叫混循环小数。
怎样把混循环小数化为分数呢?看下面的例题。
例2 把混循环小数化分数。
(2)先看小数部分0.353
由以上例题可以看出,一个混循环小数的小数部分可以化成分数,这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成
的数的差。
分母的头几位数是9,末几位是0。
9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
三、循环小数的四则运算
循环小数化成分数后,循环小数的四则运算就可以按分数四则运算法则进行。
从这种意义上来讲,循环小数的四则运算和有限小数四则运算一样,也是分数的四则运算。
例3 计算下面各题:
解:先把循环小数化成分数后再计算。
例4 计算下面各题。
分析与解:(1)把循环小数化成分数,再按分数计算。
(2)可根据乘法分配律把1.25提出,再计算。
(3)把循环小数化成分数,根据乘法分配律和等差数列求和公式计算。
1文档来源为:从网络收集整理.word版本可编辑.。