修正剑桥模型原文
- 格式:pdf
- 大小:21.56 MB
- 文档页数:39
1.剑桥模型(Cam-clay Model )剑桥模型是由英国剑桥大学Roscoe 等于1963年提出的,这个模型基于正常固结土和超固结土试样的排水和不排水三轴实验基础上,提出了土体临界状态的概念,并在实验基础上,再引入加工硬化原理和能量方程,提出剑桥模型。
这个模型从试验和理论上较好的阐明了土体弹塑性变形特征,尤其考虑了土的塑性体积变形,因而一般认为,剑桥模型的问世,标志着土本构理论发展的新阶段的开始。
(1) 剑桥模型。
剑桥模型基于传统塑性位势理论,采用单屈服面和关联流动法则屈服面形式也不是基于大量的实验而提出的假设,而是依据能量理论提出的。
依据能量方程,外力做功dW 一部分转化为弹性能e dW ,另一部分转化为耗散能(或称塑性能)p dW ,因而有dW =e dW +p dW(1-154) e dW =e eV qd d p γε+' (1-155)p pV p qd d p dW γε+'= (1-156)剑桥模型中,由各向等压固结实验中回弹曲线确定弹性体积变形p p d e k d eV ''+=1ε (1-157)式中,k 为膨胀指数,即 p In e '-回弹曲线的斜率。
同时,假设弹性剪切变形为零,即0=e d γ (1-158)则弹性能 p d ekp p d k dW e '+=''=1υ (1-159)剑桥模型中还建立如下的能量方程,即塑性能等于由于摩擦产生的能量耗散,则有 p p p V d p qd d p γνγε'=+'- (1-160)式中第一项改用负号,是因为p V d ε取以压为正。
代入式(1-161)⎪⎭⎪⎬⎫==ij pij p d s d d λεεθθσ (1-161) 并考虑式(1-158),则有γγγνd p M d p M d p dW p p p '='='= (1-162) 式中,M 为q p '-'平面上的破坏线的斜率,即ϕϕ'-'=sin 3sin 6M (1-163) 式中ϕ'为土体有效摩擦角。
1修正剑桥模型介绍土体本构理论是岩土工程学科的重要基础理论。
随着对土体力学特性的不断深入,塑性理论逐渐被应用于土体本构关系的研究中来。
Roscoe 于1963 年提出著名的剑桥粘土模型,是应用塑性理论的代表,被看做现代土力学的开端,在本构理论研究发展过程中, 各种建模思想不断涌现,出现了各种不同形式的土体本构模型,但弹塑性模型中得到公认的还只有剑桥模型。
现在国际岩土本构的一大发展趋势是又回到剑桥模型,在剑桥模型基础上进行改进和修正,修正剑桥模型是由罗斯科(Roscoe)和伯兰特(Burland)于1968年对剑桥模型作了修正后提出的一个土的弹塑性模型。
主要是对剑桥模型的弹头形屈服面形状作了修正,认为屈服面轨迹应为椭圆。
修正后的模型通常称为修正剑桥模型。
随后又修正了剑桥模型认为在完全状态边界面内土体变形是完全弹性的观点。
认为在完全状态边界面内,当剪应力增加时,虽不产生塑性体积变形,但产生塑性剪切变形。
这可认为是对修正剑桥模型的再次修正。
剑桥模型是英国剑桥大学的Roscoe和Burland根据正常固结粘土和弱超固结粘土的三轴试验,采用状态边界面的概念,由塑性理论的流动法则和塑性势理论,采用简单曲线配合法,建立塑性与硬化定律的函数。
它考虑了静水压力屈服特性、压硬性、剪缩性,但破坏面有尖角,该点的塑性应变方向不易确定。
其假定的弹性墙内加载仍会产生塑性变形。
原始的剑桥模型中存在一个缺点,即p'轴上各向同性压缩的屈服点p'的屈服面正交方x向(塑性流动方向)与水平坐标轴方向不一致。
这会导致各向同性加载(初始固结)所产生的塑性(体积)应变增量方向(它应该与水平坐标p'轴的方向一致)与屈服面的正交方向(塑性流动方向)不一致,如图1所示,图中虚线为原始剑桥模型的屈服面。
这是原始剑桥模型的屈服面与试验结果不一致的地方,也是该屈服面不足的地方。
图1 原始剑桥模型和修正剑桥模型在点处的流动情况纵观剑桥模型40 多年的发展,总结其局限性主要有:(1)受制于经典塑性理论,采用Drucker公设和相关联的流动法则,在很多情况下与岩土工程实际状态不符;破坏面有尖角,该点的塑性应变方向不易确定。
基于修正剑桥模型模拟理想三轴不排水试验——两种积分算法的对比分析(CZQ-SpringGod )1、修正剑桥模型在塑性功中考虑体积塑性应变的影响,根据屈服面一致性原则,假定屈服函数对硬化参数的偏导为0,就获得了以理想三轴不排水试验为基础的修正剑桥模型屈服函数:22(,)()0c q f p q p p p M =+-= (1) 其中3kkp σ=,ij ij ij s p σδ=-,212ij ij J s s =,q =M 为临界线斜率,c p 为前期固结压力。
硬化/软化法则:p c v c dp v d p ελκ=- (2) 式中p v ε为体积塑性应变,v 为比体积,λ为正常固结线斜率,κ为回弹线斜率。
由于不排水屈服面推导过程是基于硬化参数c p 偏导为0,也就是说不排水试验中硬化参数同体积塑性应变无关,屈服面不变化,而若引入硬化法则就同屈服面推导过程中的假定矛盾,因此计算时将模型处理为理想塑性模型。
2、显式和隐式两种积分格式考虑应变增量ε∆驱动下,第n 增量步到第n+1增量步之间的应力积分格式。
显式积分格式的推导参考文献[1],其中弹塑性矩阵中的塑性硬化模量H=0。
隐式积分格式推导如下:11()n n n p v v p p K εε++=+∆-∆ (3) 111(2)n p n n v c p p ε+++∆=Λ⋅- (4) 12()n n p ij ij ij ij s s G e e +=+∆-∆ (5) 1123n ij p n ij s e M ++∆=Λ (6) 111112(,)()0n n n n n c qf q p p p p M +++++=+-= (7)在这一组方程中没有硬化规律方程表明为理想塑性,并将式(3)-(7)合并化简得到:1112112122(2)06()(1)0n n n n v c n n n trial c p p K K p p G q p p p M Mε++++++⎧--∆+⋅Λ⋅-=⎪⎨+-+Λ=⎪⎩ (8) 式中3(2)(2)2n n trial ij ij ij ij q s G e s G e =+∆+∆ 求解(8)式方程组即可得到n+1增量步的各个增量。
岩土本构模型原理及应用简述摘要:简述了岩土本构模型中弹性本构模型、弹塑性本构模型及粘弹塑性模型的建立、应用范围和局限性。
认为当前的岩土本构模型,简单便于计算的模型不能反映岩土真实的力学性状,而精细复杂的模型参数难以确定,难以推广应用。
直至现阶段还没有一种能适应任何条件的普遍本构模型,目前岩土本构模型研究有必要向这方面发展。
关键词:岩土弹性本构模型弹塑性本构模型粘弹塑本构模型在实际工程中岩土体常常有很复杂的应力-应变特性,如非线性、弹性、塑性、粘性以及剪胀性、应变硬化(软化)、各向异性等,同时受到应力路径、应力历史以及岩土的状态、组成、结构和温度不同程度的影响。
因此为了反映岩土真实的力学性状,必须建立较为复杂的本构模型。
而实际工程应用中,在满足一定的精度条件下,又要求简单实用。
虽然至今的岩土本构模型达数百种,但大体上分为下述几类:弹性模型、弹塑性模型、粘弹塑性模型等。
1 弹性本构模型弹性模型是建立在弹性理论基础上的本构模型。
最简单的是线弹性模型,即广义胡克定律。
非线性弹性模型一般可分为三类:Cauchy弹性模型、超弹模型和次弹性模型。
非线性弹性模型是线弹性模型的推广,按照拟合应力-应变曲线的形状分为:折线型、双曲线型、对数曲线型等。
按照采用的弹性系数又可分为E-μ(弹性模量-泊松比)非线性弹性模型,K-G(体积变形模量-切变模量)非线性弹性模型,以及用其他形式表示的弹性模型。
1.1 线弹性本构模型弹性是一种理想的固体特性。
实际土体在外载荷作用下,只有在应变很小时才发生弹性变形。
模拟土体应力应变性质的最古老、最简单的方法是采用线弹性模型,即假设土体应力一应变之间存在一一对应的线形关系:σij=F(εij),反映在土体应力一应变关系矩阵式{σ}=[D]{ε}中,弹性模量矩阵[D]是常量。
由于土体弹性性质的方向性决定了各线弹性模型独立弹性常数个数。
对一般的均质连续各向异性弹性体,有21个独立弹性常数,正交各向异性线弹性模型具有9个独立弹性常数,横观各向同性线弹性模型具有5个独立弹性常数,最简单的各向同性线弹性模型(虎克定律)具有2个独立弹性常数。
1.1模型参数代码可参考manual中各个章节的command命令及说明,注意单位.用prop 赋值。
1.1.12经典粘弹性模型的材料参数(Classical Viscoelastic (Maxwell Substance) –MODEL mechanical viscous)1bulk弹性体积模量,K2shear弹性剪切模量,G3viscosity动力粘度,η1.1.13粘弹性模型粘弹性模型的材料参数(Burgers Model –MODEL mechanical burgers)1bulk弹性体积模量,K2kshear Kelvin弹性剪切模量,G K3kviscosity Kelvin动力粘度,ηK4mkshear Maxwell切边模量,G M5mviscosity Maxwell动力粘度,ηM1.1.14二分幂律模型二分幂律模型的材料参数(Power Law –MODEL mechanical power)1a_1常数,A12a_2常数,A23bulk弹性体积模量,K4n_1指数,n15n_2指数,n26rs_1参考应力,σ1ref7rs_2参考应力,σ2ref8shear弹性剪切模量,G1.1.15蠕变模型蠕变模型材料参数(WIPP Model –MODEL mechanical wipp)1act_energy活化能,Q2a_wipp常数,A3b_wipp常数,B4bulk弹性体积模量,K5d_wipp常数,D6e_dot_star临界稳定状态蠕变率,7gas_c气体常数,R8n_wipp指数,n9shear弹性剪切模量,G10temp温度,T下列参数可以显示、绘图和通过fish访问1e_prime累积主蠕变应变2e_rate累积主蠕变应变率Burger、蠕变组合材料模型的材料参数(Burgers—Creep Viscoplastic Model –MODEL mechanical cvisc)1bulk弹性体积模量,K2cohesion内聚力,c3density密度,ρ4dilation剪胀角,Ψ5friction内摩擦角,Φ6kshear Kelvin弹性剪切模量,G K7kviscosity Kelvin粘度,ηK8shear弹性剪切模量,G9tension抗拉强度,σt10mviscosity Maxwell动力粘度,ηM下列计算参数可以显示、绘图和通过fish访问1es_plastic累积塑性切应变2et_plastic累积塑性拉应变1.1.17幂律模型幂律模型的材料参数(Power-Law Viscoplastic Model –MODEL mechanical cpower)1a_1常数,A12a_2常数,A23bulk弹性体积模量,K4cohesion内聚力,c5dilation剪胀角,Ψ6friction内摩擦角,Φ7n_1指数,n18n_2指数,n29rs_1参考应力,σ1ref10rs_2参考应力,σ2ref11shear弹性剪切模量,G12tension抗拉强度,σt1.1.18粘塑形模型粘塑形模型的材料参数(WIPP—Creep Viscoplastic Model –MODEL mechanical pwipp)1act_energy活化能,Q2a_wipp常数,A3b_wipp常数,B4bulk弹性体积模量,K5d_wipp常数,D6e_dot_star临界稳定状态蠕变率,7gas_c气体常数,R8kshear材料参数,KΦ9n_wipp指数,n10kdil材料参数,q k11kvol材料参数,qΦ12shear弹性切变模量,G13temp温度,T14tension抗拉强度,σt以下计算参数可以显示、绘图和通过fish访问1e_prime累积主蠕变应变2e_rate累积主蠕变应变率3es_plastic累积塑性切应变4et_plastic累积塑性拉应变碎盐变形模型的材料参数(Crushed—Salt Model –MODEL mechanical cwipp)1act_energy活化能,Q2a_wipp常数,A3b_f最终体积模量,K f4b_wipp常数,B5b0蠕变压实系数,B06b1蠕变压实系数,B17b2蠕变压实系数,B28bulk弹性体积模量,K9d_f最终密度,ρf10d_wipp常数,D11e_dot_star临界稳定状态蠕变率,12gas_c气体常数,R13n_wipp指数,n14rho密度,ρ15s_f最终切变模量,G f16shear弹性切变模量,G17temp温度,T以下计算参数可以显示、绘图和通过fish访问1frac_d当前碎片密度,ρd2s_g1蠕变压实参数,G3s_k1蠕变压实参数,K均质流体模型的材料参数1permeability等方向渗透性,k2porosity孔隙率,n(默认时,n=0。
常见地基模型总结常见地基模型总结地基模型是描述地基土在受力状态下应力和应变之间关系的数学表达式。
广义的讲,是描述土体在受力状态下的应力、应变、应变率、应力水平、应力历史、加载率、加载途径以及时间、温度等之间的函数关系。
通常模型有线弹性地基模型、非线弹性地基模型和弹塑性地基模型等。
一、线弹性地基模型地基土在荷载作用下,应力应变关系为直线关系,用广义胡克定律表示。
常用的有三种,温克勒地基模型、弹性半空间地基模型、分层地基模型。
1、温克勒地基模型假定地基由许多独立且互不影响的弹簧组成,即地基任一点所受力只与该点的地基变形成正比,而且该点所受的力不影响该点以外的变形。
表达式为p=k·s(式中k为地基基床系数,根据不同地基分别采用现场载荷班试验或室内三轴、固结试验获得)。
该方法计算简便,只要k值选择得当,可获得较为满意的结果,但在理论上不够严格,未考虑土介质的连续性,忽略了地基中的切应1力,按这一模型,地基变形只发生在基底范围内,而在基底范围外没有地基变形,这与实际不符使用不当会造成不良后果。
该法在地基梁和板以及桩的分析中广泛采用,如台北101大楼采用了广义温克勒地基模型。
由于该模型未考虑剪力作用,故主要使用于土层薄、结构大、土层下为基岩(剪切模量小、可压缩层薄)的地基,而上硬下软的地基不适用。
2、弹性半空间地基模型假定地基为均匀、各向同性的弹性半空间体。
采用Boussinesq公式求解。
对于均布荷载下矩形中点的竖向变形以及对于荷载面积以外的任一点的变形可以通过积分求得。
该法考虑了压力的扩散作用,比温克勒模型更合理,但未反应地基土的分层特性,且认为压力可以扩散到无限远处,造成计算的沉降量和地表沉降范围都较实测结果为大。
3、分层地基模型分层地基模型即是我国地基基础规范中用以计算地基最终沉降量的分层总和法。
该模型能较好的反应地基土扩散应力和变形的能力,能较容易的考虑土层非均匀性沿深度的变化和土的分层,通过计算表明,分层地2基模型的计算结果比较符合实际情况。