随机信号处理教程 第3章 随机过程的功率谱密度
- 格式:ppt
- 大小:1.00 MB
- 文档页数:23
随机信号的功率谱密度估计和相关函数随机信号的功率谱密度估计和相关函数1.实验目的了解估计功率谱密度的几种方法,掌握功率谱密度估计在随机信号处理中的作用。
⒉实验原理随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。
功率谱密度简称为功率谱,是自相关函数的傅里叶变换。
对功率谱密度的估计又称功率谱估计。
1.线性估计法(有偏估计):线性估计方法是有偏的谱估计方法,谱分辨率随数据长度的增加而提高。
包括自相关估计、自协方差法、周期图法。
2.非线性估计(无偏估计):非线性估计方法大多是无偏的谱估计方法,可以获得高的谱分辨率。
包括最大似然法、最大熵法⒊实验任务与要求1. 所有功能均用matlab仿真。
2. 输入信号为:方波信号+n(t),方波信号信号基频1KHz,幅值为1v,n(t)为白噪声。
3. 编写自相关估计法、自协方差法、周期图法、最大似然法、最大熵法的matlab 程序。
正确的运行程序。
4. 必须用图示法来表示仿真的结果。
对几种功率谱估计的方法进行比较分析,发现它们各自有什么特点?。
5. 按要求写实验报告。
4.Matlab程序如下:生成输入信号:clear;fs=1024;%设采样频率为1024n=0:1/fs:1;N=length(n);W=2000*pi;%因方波频率F=1000HZ所以角频率W=2000piX1n=square(W*n);%方波信号X2n=randn(1,N);%白噪声信号xn=X1n+X2n;%产生含有噪声的信号序列XNsubplot(3,1,1)plot(n,xn);xlabel('n')ylabel(‘输入信号’)%绘输入信号图(1).周期图法:fs=4000;n=0:1/fs:1;N=length(n);W=2000*pi;x1n=square(W*n);x2n=randn(1,N);xn=x1n+x2n;subplot(3,1,1)plot(n,xn);Nfft=256;N=256;%傅里叶变换的采样点数256Pxx=abs(fft(xn,Nfft).^2)/N;f=(0:length(Pxx)-1)*fs/length(Pxx);subplot(3,1,2),plot(f,10*log10(Pxx)),%转成DB单位xlabel('频率/HZ'),ylabel('功率谱/db'),title('周期图法');(2).相关函数法:fs=1000;n=0:1/fs:1;N=length(n);W=2000*pi;x1n=square(W*n);x2n=randn(1,N);xn=x1n+x2n;subplot(3,1,1)plot(n,xn);%输入信号m=-100:100[r,lag]=xcorr(xn,100,'biased')%求XN的自相关函数R,biased为有偏估计lag为R 的序列号subplot(3,1,2)hndl=stem(m,r);%绘制离散图,分布点从-100—+100set(hndl,'Marker','.')set(hndl,'MarkerSize',2);ylabel('自相关函数R(m)')%利用间接法计算功率谱k=0:1000;%取1000个点w=(pi/500)*k;M=k/500;X=r*(exp(-j*pi/500).^(m'*k));%对R求傅里叶变换magX=abs(X);subplot(3,1,3)plot(M,10*log10(magX));xlabel('功率谱的改进直接法估计')(3).自协方差法:clear all;fs=1000;n=0:1/fs:3;P=2000*pi;y=square(P*n);xn=y+randn(size(n));%绘制信号波形subplot(211)plot(n,xn)xlabel('时间(s)')ylabel('幅度')title('y+randn(size(n))')ymax_xn=max(xn)+0.2;ymin_xn=min(xn)-0.2;axis([0 0.3 ymin_xn ymax_xn]) %使用协方差法估计序列功率谱p=floor(length(xn)/3)+1;nfft=1024;[xpsd,f]=pcov(xn,p,nfft,fs,'half'); %绘制功率谱估计pmax=max(xpsd);xpsd=xpsd/pmax;xpsd=10*log10(xpsd+0.000001); subplot(2,1,2)plot(f,xpsd)title('基于协方差的功率谱估计') ylabel('功率谱估计(db)') xlabel('频率(HZ)')grid on;ymin=min(xpsd)-2;ymax=max(xpsd)+2;axis([0 fs/2 ymin ymax])(4).最大熵法fs=4000;n=0:1/fs:1;N=length(n);W=2000*pi;x1n=square(W*n);x2n=randn(1,N);xn=x1n+x2n;subplot(3,1,1)plot(n,xn);Nfft=256;%分段长度256[Pxx,f]=pmem(xn,14,Nfft,fs);%调用最大熵函数pmem,滤波器阶数14 subplot(2,1,2),plot(f,10*log10(Pxx)),title(' 最大熵法,滤波器14'),xlabel('频率HZ'),ylabel('功率谱db');(5).最大似然法:fs=1000;n=0:1/fs:1;N=length(n);W=2000*pi;x1n=square(W*n);x2n=randn(1,N);xn=x1n+x2n;subplot(3,1,1)plot(n,xn);%估计自相关函数m=-500:500;[r,lag]=xcorr(xn,500,'biased');R=[r(501) r(502) r(503) r(504);r(500) r(501) r(502) r(503);r(499) r(500) r(501) r(502);r(498) r(499) r(500) r(501)]; [V,D]=eig(R);V3=[V(1,3),V(2,3),V(3,3),V(4,3)].'; V3=[V(1,4),V(2,4),V(3,4),V(4,4)].'; p=0:3;wm=[0:0.002*pi:2*pi];B=[(exp(-j)).^(wm'*p)];A=B;%最小方差功率谱估计z=A*inv(R)*A';Z=diag(z');pmv=1./Z;subplot(2,1,2)plot(wm/pi,pmv);title('基于最大似然的功率谱估计') ylabel('功率谱幅度(db)') xlabel('角度频率w/pi')5.设计思想随机信号的功率谱密度用来描述信号的能量特征随频率的变化关系。
随机过程的谱密度与功率谱密度随机过程是在时间上随机变化的过程,它在许多领域中都有广泛的应用。
在研究随机过程时,谱密度和功率谱密度是两个重要的概念。
一、谱密度谱密度是描述随机过程在频域上的性质的一种测量,它用来表示随机过程的频谱特性。
谱密度通常用符号S(f)表示,其中f是频率。
谱密度是随机过程各频率成分的功率平均值,即将随机过程在不同频率上的功率加权平均得到的值。
谱密度越大,表示在该频率上的成分越强。
对于离散随机过程,谱密度可以通过对其自相关函数进行傅里叶变换得到。
而对于连续随机过程,谱密度可以通过对其自相关函数进行傅里叶变换或拉普拉斯变换得到。
谱密度具有一些重要的性质,例如:1. 谱密度是非负的且对称的。
2. 谱密度在频率上的积分等于随机过程的方差。
3. 谱密度函数是随机过程的一种特征,不同的谱密度函数可以表示不同的随机过程。
二、功率谱密度功率谱密度是描述随机过程在频域上能量分布的一种测量,也可以理解为随机过程的平均功率。
功率谱密度通常用符号S(f)表示,其中f 是频率。
与谱密度类似,功率谱密度也可以通过随机过程的自相关函数进行傅里叶变换或拉普拉斯变换得到。
功率谱密度表示随机过程各频率成分的功率分布,即在不同频率上的功率值。
功率谱密度越大,表示在该频率上的功率越强。
功率谱密度具有一些重要的性质,例如:1. 功率谱密度是非负的。
2. 功率谱密度在频率上的积分等于随机过程的总功率。
3. 功率谱密度函数是随机过程的一种特征,不同的功率谱密度函数可以表示不同的随机过程。
三、谱密度与功率谱密度的关系谱密度和功率谱密度之间存在一定的关系。
对于连续随机过程,谱密度和功率谱密度可以通过以下关系进行转换:S(f) = |H(f)|^2 * P(f)其中,S(f)表示谱密度,H(f)表示系统的频率响应函数,P(f)表示功率谱密度。
这个关系说明了谱密度和功率谱密度之间的链接,它们在频域上描述了随机过程的特性。
结论谱密度和功率谱密度是研究随机过程的重要工具,它们在频域上描述了随机过程的特性。