离散时间随机过程的功率谱密度
- 格式:ppt
- 大小:747.02 KB
- 文档页数:20
功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。
谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别:1。
功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列)2。
功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
热心网友回答提问者对于答案的评价:谢谢解答。
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的。
功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。
一般用具有统计特性的功率谱来作为谱分析的依据。
功率谱与自相关函数是一个傅氏变换对。
功率谱具有单位频率的平均功率量纲。
第 4 章随机信号与线性系统陈明东南大学移动通信国家重点实验室chenming@随机过程和随机信号的概念当用随机过程来表示一组信号时,此时的随机过程就被称为随机信号。
4.1 随机信号的功率谱密度确定性信号的频谱信号的频谱特性是描述信号的一个重要指标。
对于确定性信号,其Fourier 变换可以反映其频谱特性。
()cos2n n s t a ntp ¥==åj2ˆ()()d ftsf s t etp ¥-?=òFourier分解的物理意义各种频率成份的振动频谱与光谱进行对比光谱红橙黄绿青蓝紫频谱如何反应随机信号的频谱?由于随机信号实际上是一族确定性信号,要从统计意义上反映其频谱特性,需要用功率谱密度的概念。
4.1.1连续时间随机信号的功率谱密度若()X t 是一个定义于¡上的连续时间随机过程,则[,]T T -上的平均功率为{}21()d 2TT TP E X t tT-=ò利用Fourier 变换的Parseval 等式,可以得到()X t 在(),-ゥ上的平均功率为2j2lim 1lim ()e d d 2TTT ftTT P P E X t t fT ¥-p -?=殪镲镲犏=睚犏镲犏镲镲腩蝌从上式可以看出,下式所定义的关于频率f 的函数2j21()lim ()e d 2TftX TT S f E X t tT -p -禳镲镲=睚镲镲镲铪ò反映了随机信号功率在单位频率上的分布情况,因此定义函数()X S f 为连续时间随机过程()X t 的功率谱密度。
功率谱密度的性质性质4.1 设()X t 是定义于¡上的连续时间随机过程,()X S f 是其功率谱密度,则有如下性质: ① 功率谱密度在¡上的积分为信号总功率,也即()d X P S f f ¥-?=ò。
② ≥()0X S f ,也即()X S f 是一个非负实函数。
功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。
功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
如何用MATLAB绘制功率谱密度图形?随机产生一次数据x=randn(1,1024*8)求功率谱密度。
如何应用MATLAB画出来横坐标为频率(Frequency(hz)))纵坐标为功率谱密度(Power Spectrum Magn itude (dB))的图形?MATLAB程序为:function [t,omg,FT,IFT] = prefourier(Trg,N,OMGrg,K)% 输入参数:% Trg : 二维矢量,两个元素分别表示时域信号的起止时间;% N : 时域抽样数量;% OMGrg: 二维矢量,两个元素分别表示频谱的起止频率;% K : 频域抽样数量。
% 输出参数:% t : 抽样时间;% omg : 抽样频率;% FT : 实现傅里叶变换的矩阵~U~及系数;% IFT : 实现傅里叶逆变换的矩阵~V~及系数。
T = Trg(2)-Trg(1);t = linspace(Trg(1),Trg(2)-T/N,N)';OMG = OMGrg(2)-OMGrg(1);omg = linspace(OMGrg(1),OMGrg(2)-OMG/K,K)';FT = T/N*exp(-j*kron(omg,t.'));IFT = OMG/2/pi/K*exp(j*kron(t,omg.'));end在另一个脚本文件中:clc;clear ;close all;N=1024*8;K=500;OMGrg=[0,100];Trg=[0,1];[t,omg,FT,IFT] = prefourier(Trg,N,OMGrg,K);% f0=10;% f=sin(2*pi*f0*t);f=randn(N,1);F=FT*f;figure;plot(t,f);figure;plot(omg/2/pi,abs(F).^2);高斯白噪声的功率谱理论上为一直线,除非它是在某些特定情况下成立,比如经过了滤波器。
功率谱密度分析在信号处理中的应用信号是随着时间变化的电压,电流,电磁波等物理量。
信号分析是从信号中获取有用信息的过程。
这种信号常常是含有噪声的,并且要从中提取出所需的信息。
由于信号需要先进行预处理,因此,信号处理是一个复杂的任务。
在信号处理领域,功率谱密度分析是一种常用的技术,被广泛应用于信号处理和系统分析中。
一、功率谱密度分析的基本概念功率谱密度分析的目标是确定一个信号在不同频率下的功率,这是一种分析信号的频域方法。
功率谱密度是指信号在一个频带内的功率的分布,单位是瓦特/赫兹(W/Hz)。
功率谱密度分析的输出结果一般呈现为功率谱密度图,它描述了信号的能量随着频率的变化而变化的情况。
功率谱密度的计算主要基于伯努利-欧拉定理,即将复变量表示为实部与虚部的和。
对于一个实值信号x(t),其傅里叶变换H(f)如下所示:H(f)=∫x(t)exp[-2πi f t]dt然后,对于信号x(t)和其复共轭x* (t),可以计算出它们的积:P(f)=x(t)×x*(t)其中,t 代表时间,f 代表频率。
对于连续时间信号,P(f) 被称为功率谱密度,表示频率 f 的功率。
对于离散时间信号,其内积被替换为求和,并且功率谱密度的单位变为瓦特/赫兹(W/Hz)。
二、功率谱密度分析的应用功率谱密度分析在信号处理中有着广泛的应用,下面我们主要介绍其在音频处理和图像处理中的应用:1. 音频处理中的功率谱密度分析音频信号的功率谱密度是指一段时间内声音量随着频率变化的标志。
在音频处理中,功率谱密度分析可以用于识别音频信号的特定频率成分,并清除噪声。
在使用数字信号处理算法对音频信号进行无噪声处理时,功率谱密度图经常被使用。
通过检测功率谱密度的凸起与波峰,可以识别音频信号的某些特定频率。
功率谱密度分析还可以用于滤波器设计。
具体地说,使用功率谱密度可以确定所需滤波器的特性,例如通带的大小、截止频率等,从而设计出能清除干扰和噪声的专用滤波器。
第二章平稳随机过程的谱分析平稳随机过程第二章平稳随机过程的谱分析本章要解决的问题:●随机信号是否也可以应用频域分析方法?●傅里叶变换能否应用于随机信号?● 相关函数与功率谱的关系● 功率谱的应用● 采样定理● 白噪声的定义2.1 随机过程的谱分析2.1.1 预备知识1、付氏变换:对于一个确定性时间脉冲x(t),设x(t)是时间t 的非周期实函数,且x(t) 满足狄利赫利条件(有限个极值,有限个断点,断点为有限值)且绝对可积,能量有限,则x(t)傅里叶变换存在。
即:满足上述三个条件的x(t)的傅里叶变换为:其反变换为:2、帕赛瓦等式由上面式子可以重新得到:——称为非周期性三十天拉热函数的帕塞瓦(Parseval)等式。
物理意义:若x(t)表示的是电压(或电流) ,则上式左边代表x(t)在时间(-∞, ∞) 区间的总能量(单位阻抗)。
因此,等式右边的被积函数X X (ω)2表示了信号x(t)能量按频率分布的情况,故称X X (ω)2为能量谱密度。
2.1.2、随机过程的功率谱密度变换一个信号的惟教变换是否存在,可能需要满足三个条件,那么随机信号是否满足这三个条件从而存在付氏呢?随机信号持续时间无限长,因此,对于非0的样本函数,它的能量一般也是无限的,因此,其付氏变换不牵涉到。
但是注意到它的平均功率是有限的,在特定的条件下,仍然洪可以利用博里叶变换这一工具。
为了将傅里叶变换方法常量应用于随机过程,必须对过程的待测函数做某些限制,最简单的一种方法是应用截取函数。
截取函数x T (t):图2.1 x (t)及其截取函数当x(t)为有限值时,裁取函数x T (t)满足绝对可积条件。
因此,x T (t)的傅里叶变换存在,有很明显,式的变化)x T (t)也应满足帕塞瓦等式,即:(注意积分区间和表达用2T 除上式等号用的两端,可以得到等号于两边取集合平均,可以得到:令T→∞,再取极限,便可得到随机过程的平均功率。
功率谱密度谱是一种概率统计方法,是对随机变量均方值的量度。
一般用于随机振动分析,连续瞬态响应只能通过概率分布函数进行描述,即出现某水平响应所对应的概率。
功率谱密度是结构在随机动态载荷激励下响应的统计结果,是一条功率谱密度值—频率值的关系曲线,其中功率谱密度可以是位移功率谱密度、速度功率谱密度、加速度功率谱密度、力功率谱密度等形式。
数学上,功率谱密度值—频率值的关系曲线下的面积就是方差,即响应标准偏差的平方值。
谱是个很不严格的东西,常常指信号的Fourier变换,是一个时间平均(time average)概念功率谱的概念是针对功率有限信号的(能量有限信号可用能量谱分析),所表现的是单位频带内信号功率随频率的变换情况。
保留频谱的幅度信息,但是丢掉了相位信息,所以频谱不同的信号其功率谱是可能相同的。
有两个重要区别: 1。
功率谱是随机过程的统计平均概念,平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier变换,对于一个随机过程而言,频谱也是一个“随机过程”。
(随机的频域序列) 2。
功率概念和幅度概念的差别。
此外,只能对宽平稳的各态历经的二阶矩过程谈功率谱,其存在性取决于二阶局是否存在并且二阶矩的Fourier变换收敛;而频谱的存在性仅仅取决于该随机过程的该样本的Fourier变换是否收敛。
热心网友回答提问者对于答案的评价:谢谢解答。
频谱分析(也称频率分析),是对动态信号在频率域内进行分析,分析的结果是以频率为坐标的各种物理量的谱线和曲线,可得到各种幅值以频率为变量的频谱函数F(ω)。
频谱分析中可求得幅值谱、相位谱、功率谱和各种谱密度等等。
频谱分析过程较为复杂,它是以傅里叶级数和傅里叶积分为基础的.功率谱是个什么概念?它有单位吗?随机信号是时域无限信号,不具备可积分条件,因此不能直接进行傅氏变换。
一般用具有统计特性的功率谱来作为谱分析的依据。
功率谱与自相关函数是一个傅氏变换对。
功率谱具有单位频率的平均功率量纲.所以标准叫法是功率谱密度。
随机过程的自相关函数与其功率谱密度是傅里叶变换关系随机过程是一个随时间变化的信号,每个时间点上都有一定的随机性。
我们可以用一个随机变量来描述每个时间点上的取值。
这个随机变量的集合就是一个随机过程。
自相关函数是用来描述随机过程在不同时间点上的相关性的函数。
它表示了随机过程在不同时间点上的取值之间的相关程度。
具体来说,自相关函数R(t1,t2)表示了时刻t1和t2上的信号值之间的相关性。
它的定义如下:R(t1,t2)=E[X(t1)X(t2)]其中,X(t1)和X(t2)是随机过程在时刻t1和t2上的取值,E[.]表示期望操作。
功率谱密度是用来描述随机过程在频域上的特性的函数。
它表示了随机过程在不同频率上的功率分布情况。
具体来说,功率谱密度S(f)表示了随机过程在频率f上的功率。
它的定义如下:S(f)=,F{R(t)},^2其中,R(t)是随机过程的自相关函数,F{.}表示傅里叶变换操作。
自相关函数和功率谱密度之间存在一个重要的关系,即它们通过傅里叶变换相关联。
具体来说,自相关函数是功率谱密度的傅里叶变换的模的平方,而功率谱密度是自相关函数的傅里叶变换的伪谱密度。
这个关系可以用下面的公式表示:R(t1, t2) = ∫S(f)e^(j2πft)df其中,∫表示积分操作,e^(j2πft)是复指数函数,代表了频率f上的旋转。
这个关系的意义是,自相关函数和功率谱密度提供了从时域到频域和从频域到时域的映射。
我们可以通过自相关函数计算功率谱密度,也可以通过功率谱密度计算自相关函数。
总结起来,自相关函数和功率谱密度是通过傅里叶变换相关联的重要概念。
自相关函数描述了随机过程在不同时刻上的相关性,而功率谱密度描述了随机过程在不同频率上的功率分布情况。
它们的傅里叶变换关系提供了从时域到频域和从频域到时域的映射。
这个关系在信号处理和随机过程分析中具有重要的应用价值。